FIND VERTEX FOCUS DIRECTRIX AND LATUS RECTUM OF PARABOLA

Details of Parabola with Vertex (0, 0)

Symmetric about x - axis and y - axis :

Right 

V (0, 0)

F (a, 0)

Left

V (0, 0)

F (-a, 0)

Up

V (0, 0)

F (0, a)

Down

V (0, 0)

F (0, -a)

Equation of latus rectum

x = a

x = -a

y = a

y = -a

Equation of directrix :

x = -a

x = a

y = -a

y = a

Details of Parabola with Vertex (h, k)

Symmetric about x - axis and y - axis :

Right 

V (h, k)

F (h + a, k)

Left

V (h, k)

F (h-a, k)

Up

V (h, k)

F (h, k + a)

Down

V (h, k)

F (h, k-a)

Equation of latus rectum :

x = h + a

x = h - a

y = k + a

y = k - a

Equation of directrix :

x = h-a

x = h + a 

y = k - a

y = k + a

Question :

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

(i) y2  = 16x

Solution :

From the given information, we come to know that the given parabola is symmetric about x-axis and open right ward.

4a  =  16

a  =  4

Vertex : V (0, 0) 

Focus : F (a, 0)  ==>  F(4, 0)

Equation of latus rectum : x = a ==>  x  =  4

Equation of directrix : x = -a ==>  x  =  -4

Length of latus rectum  =  4a  =  4(4)  =  16 

Let us look into the next problems on "Find Vertex Focus Directrix and Latus Rectum of Parabola"

(ii) x2 = 24y

Solution :

From the given information, we come to know that the given parabola is symmetric about y-axis and open upward.

4a  =  24

a  =  6

Vertex : V (0, 0) 

Focus : F (0, a)  ==>  F(0, 6)

Equation of latus rectum : y = a ==>  y  =  6

Equation of directrix : y = -a ==>  y  =  -6

Length of latus rectum  =  4a  =  4(6)  =  24

(iii)  y2 = −8x

Solution :

From the given information, we know that the given parabola is symmetric about x-axis and left upward.

4a  =  8

a  =  2

Vertex : V (0, 0) 

Focus : F (-a, 0)  ==>  F(-2, 0)

Equation of latus rectum : x = -a ==>  x  =  -2

Equation of directrix : x = a ==>  x  =  2

Length of latus rectum  =  4a  =  4(2)  =  8

(iv) x2 - 2x + 8y + 17  =  0

Solution :

x2 - 2x + 8y + 17  =  0

x2 - 2 ⋅ x  ⋅ 1 + 12 - 1+ 8y + 17  =  0

(x - 1)2 - 1 + 8y + 17  =  0

(x - 1)2  =  -8y - 16

(x - 1)2  =  -8(y + 2)

The parabola is symmetric about y-axis and open downward.

4a  =  8

a  =  2

Vertex : V(h, k)  ==>  (1, -2)

Focus : F (h, k - a) ==>  F (1, -4)

Equation of directrix : y = k + a ==>  y  =  -2 + 2  =  0

Length of latus rectum  =  4a  =  4(2)  =  8

(v) y2 - 4y - 8x + 12  =  0

Solution :

y2 - 4y - 8x + 12  =  0

y2 - 2 ⋅ y ⋅2 + 22 - 22 - 8x + 12  =  0

(y - 2)2 - 4  =  8x - 12

(y - 2)2  =  8x - 8

(y - 2)2  =  8(x - 1)

The parabola is symmetric about x-axis and open rightward.

4a  =  8

a  =  2

Vertex : V(h, k)  ==>  (1, 2)

Focus : F (h+a, k) ==>  F (3, 2)

Equation of directrix : x = h - a ==>  x  =  -1

Length of latus rectum  =  4a  =  4(2)  =  8

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 10, 24 05:46 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 85)

    Dec 10, 24 05:44 AM

    digitalsatmath72.png
    Digital SAT Math Problems and Solutions (Part - 85)

    Read More

  3. How to Find Slant Asymptote of a Function

    Dec 08, 24 08:11 PM

    slantasymptote.png
    How to Find Slant Asymptote of a Function (Oblique) - Examples with step by step explanation

    Read More