FIND UNKNOWNS IN QUADRATIC EQUATION WITH ALPHA BETA

Find Unknowns in Quadratic Equation with Alpha Beta :

Here we are going to see some example problems of finding unknowns in quadratic equation with alpha beta.

Formulas of Alpha Beta in Quadratic Equation

(α2 + β2)  =  (α + β)- 2αβ

(α3 - β3)  =  (α - β)+ 3αβ(α - β)

(α4 + β4)  =  (α2β2)- 2α2β2

α - β  =  √[(α + β)- 4αβ]

Find Unknowns in Quadratic Equation with Alpha Beta - Questions

Question 1 :

If α, β are the roots of 7x2+ax+2=0 and if β − α = −13/ Find the values of a.

Solution :

7x+ ax + 2=0

a = 7, b = a and c = 2

Sum of roots (α + β)  =  -b/a  =  -a/7

Product of roots (α β)  =  c/a  =  2/7

β − α = −13/7

-(α - β)  =  -13/7

(α - β)  =  -13/7

(α + β)2 - 4αβ  =  -13/7

(α + β)2 - 4αβ  =  (-13/7)2

(-a/7)2 - 4(2/7)  =  169/49

(a2/49) - (8/7)  =  169/49

a2 - 56  =  169

a2  =  225

a  =  ±15

Hence the values of a are -15 and 15.

Question 2 :

If one root of the equation 2y2 − ay + 64 = 0 is twice the other then find the values of a.

Solution :

Let α and β are two roots.

α  =  2β, β = β

Sum of roots (α + β)  =  -b/a  =  -(-a)/2  =  a/2

Product of roots (α β)  =  c/a  =  64/2  =  32

α + β  =  a/2

2β + β  =  a/2

3β  =  a/2

β  =  a/6 ---(1)

2β(β)  =  32

2β =  32

β2  =  16

β  =  ±4

When β = 4

4 = a/6

a  =  24

when β = -4

-4  =  a/6

a  =  -24

Question 3 :

If one root of the equation 3x2 + kx + 81 = 0 (having real roots) is the square of the other then find k.

Solution :

α = β2

Sum of roots (α + β)  =  -b/a  =  -k/3

Product of roots (α β)  =  c/a  =  81/3  =  27

α β  =  27

β2β  =  27

β3  =  33

β  =  3

α + β  =  -k/3  --(1)

β2+ β  =  -k/3

32+ 3  =  -k/3

12  =  -k/3

-k  =  36

k = -36

Hence the value of k is -36.

After having gone through the stuff given above, we hope that the students would have understood, "Find Unknowns in Quadratic Equation with Alpha Beta". 

Apart from the stuff given in this section "Find Unknowns in Quadratic Equation with Alpha Beta"if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...