# FIND THE VALUE OF COS X MINUS Y WHEN QUADRANTS ARE MENTIONED

Question 1 :

Find cos(x − y), given that cos x = −4/5 with π < x < 3π/2 and sin y = −24/25 with π < y < 3π/2.

Solution :

Given that, cos x = −4/5 and sin y = −24/25 both are lying in the 3rd quadrant.

So all trigonometric ratios other than tan and cot, we will have negative sign.

cos (x - y)  =  cos x cos y - sin x sin y

 cos x = -4/5 sin x  =  √(1 - cos2x)    =  √(1 - (-4/5)2)   =  √(1 - (16/25))  =  √(25 - 16)/25   =  √(9/25) sin x  =  -3/5 sin y = −24/25cos y  =  √(1 - sin2y)  =  √(1 - (-24/25)2)   =  √(1 - (576/625)  =  √(625 - 576)/625   =  √49/625 cos y  =  -7/25

cos (x - y)  =  (-4/5)(-7/25) + (-3/5) (-24/25)

=  (28/125) + (72/125)

=  (28 + 72)/125

=  100/125

=  4/5

Question 2 :

Find sin(x − y), given that sin x = 8/17 with 0 < x < π/and cos y = −24/25 with π < y < 3π/2

Solution :

Given that, sin x = 8/17 and cos y = −24/25

Here x lies in the 1st quadrant and y lies in the 3rd quadrant.

sin (x - y)  =  sin x cos y - cos x sin y

 sin x = 8/17 cos x  =  √(1 - sin2x)    =  √(1 - (8/17)2)   =  √(1 - (64/289))  =  √(289 - 64)/289   =  √(225/289) cos x  =  15/17 (x lies in 1st quadrant) cos y = −24/25sin y  =  √(1 - cos2y)  =  √(1 - (-24/25)2)   =  √(1 - (576/625)  =  √(625 - 576)/625   =  √49/625 sin  y  =  -7/25 (y lies in the 3rd quadrant)

sin (x - y)  =  (8/17) (-24/25) - (15/17) (-7/25)

=  (-192/425) + (105/425)

=  (-192 + 105)/425

=  -87/425

Hence the value of sin (x - y) is -87/425.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients