FIND THE SLOPE FROM TWO POINTS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

When the two points (x1, y1) and (x2, y2) on the line are known, the formula given below can be used to find the slope of the line. 

Example 1 :

Find the slope of the line that is passing through the points (1, 12) and (10, 7).

Solution :

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, 12) and (x2, y2) = (10, 7). 

Slope  =  (7 - 12) / (10 - 1)

Slope  =  -5/9

Example 2 :

Find the slope of the line that is passing through the points (-2, 0) and (0, 4).

Solution :

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-2, 0) and (x2, y2) = (0, 4). 

Slope  =  (4 - 0) / [0 - (-2)]

Slope  =  4 / 2

Slope  =  2


Example 3 :

Find the slope of the line that is passing through the points (3, 2) and (8, 4).

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (3, 2) and (x2, y2) = (8, 4). 

Slope  =  (4 - 2) / (8 - 3)

Slope  =  2 / 5

Example 4 :

Find the slope of the line that is passing through the points (1, -1) and (2, 1).

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, -1) and (x2, y2) = (2, 1). 

Slope  =  [1 - (-1)] / (2 - 1)

Slope  =  [1 + 1] / 1

Slope  =  2 / 1

Slope  =  2

Example 5 :

Find the slope of the line that is passing through the points (-2, -2) and (-1, 3). 

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-2, -2) and (x2, y2) = (-1, 3). 

Slope  =  [3 - (-2)] / [-1 - (-2)]

Slope  =  [3 + 2] / [-1 + 2]

Slope  =  5 / 1

Slope  =  5

Example 6 :

Find the slope of the line using formula. 

Solution :

Mark two points on the line such that both the x-coordinate and y-coordinate are integers. 

So, we can mark the points (1, -1) and (4, 3) and measure the rise and run.

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, -1) and (x2, y2) = (4, 3). 

Slope  =  [3 - (-1)] / (4 - 1)

Slope  =  [3 + 1] / 3

Slope  =  4/3

Example 7 :

Find the slope of the line using formula. 

Solution :

Mark two points on the line such that both the x-coordinate and y-coordinate are integers. 

So, we can mark the points (-1, 4) and (4, -4) and measure the rise and run.

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-1, 4) and (x2, y2) = (4, -4). 

Slope  =  (-4 - 4) / [4 - (-1)]

Slope  =  -8 / [4 + 1]

Slope  =  -8/5

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 1)

    Feb 05, 26 09:37 AM

    digitalsatmath1.png
    Digital SAT Math Problems and Solutions (Part - 1)

    Read More

  2. AP Precalculus Problems and Solutions

    Feb 05, 26 06:41 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More

  3. SAT Math Preparation with Hard Questions

    Feb 05, 26 05:30 AM

    SAT Math Preparation with Hard Questions

    Read More