FIND THE SLOPE FROM TWO POINTS

When the two points (x1, y1) and (x2, y2) on the line are known, the formula given below can be used to find the slope of the line. 

Example 1 :

Find the slope of the line that is passing through the points (1, 12) and (10, 7).

Solution :

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, 12) and (x2, y2) = (10, 7). 

Slope  =  (7 - 12) / (10 - 1)

Slope  =  -5/9

Example 2 :

Find the slope of the line that is passing through the points (-2, 0) and (0, 4).

Solution :

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-2, 0) and (x2, y2) = (0, 4). 

Slope  =  (4 - 0) / [0 - (-2)]

Slope  =  4 / 2

Slope  =  2


Example 3 :

Find the slope of the line that is passing through the points (3, 2) and (8, 4).

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (3, 2) and (x2, y2) = (8, 4). 

Slope  =  (4 - 2) / (8 - 3)

Slope  =  2 / 5

Example 4 :

Find the slope of the line that is passing through the points (1, -1) and (2, 1).

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, -1) and (x2, y2) = (2, 1). 

Slope  =  [1 - (-1)] / (2 - 1)

Slope  =  [1 + 1] / 1

Slope  =  2 / 1

Slope  =  2

Example 5 :

Find the slope of the line that is passing through the points (-2, -2) and (-1, 3). 

Solution :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-2, -2) and (x2, y2) = (-1, 3). 

Slope  =  [3 - (-2)] / [-1 - (-2)]

Slope  =  [3 + 2] / [-1 + 2]

Slope  =  5 / 1

Slope  =  5

Example 6 :

Find the slope of the line using formula. 

Solution :

Mark two points on the line such that both the x-coordinate and y-coordinate are integers. 

So, we can mark the points (1, -1) and (4, 3) and measure the rise and run.

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (1, -1) and (x2, y2) = (4, 3). 

Slope  =  [3 - (-1)] / (4 - 1)

Slope  =  [3 + 1] / 3

Slope  =  4/3

Example 7 :

Find the slope of the line using formula. 

Solution :

Mark two points on the line such that both the x-coordinate and y-coordinate are integers. 

So, we can mark the points (-1, 4) and (4, -4) and measure the rise and run.

Formula :

Slope  =  (y- y1) / (x- x1)

Substitute (x1, y1) = (-1, 4) and (x2, y2) = (4, -4). 

Slope  =  (-4 - 4) / [4 - (-1)]

Slope  =  -8 / [4 + 1]

Slope  =  -8/5

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Arithmetic Sequence Problems and Solutions

    May 24, 25 09:41 PM

    Arithmetic Sequence Problems and Solutions

    Read More

  2. Precalculus Problems and Solutions (Part - 15)

    May 24, 25 02:40 AM

    Precalculus Problems and Solutions (Part - 15)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 168)

    May 23, 25 07:42 PM

    Digital SAT Math Problems and Solutions (Part - 168)

    Read More