FIND THE SECOND PARTIAL DERIVATIVES OF THE FUNCTION

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

When we find partial derivative of F with respect to x, we treat the y variable as a constant and find derivative with respect to x .

That is, except for the variable with respect to which we find partial derivative, all other variables are treated as constants. That is why we call them as β€œpartial derivative”.

If F has a partial derivative with respect to x at every point of A , then we say that (βˆ‚F/βˆ‚x) (x, y) exists on A.

Note that in this case (βˆ‚F/βˆ‚x) (x, y) is again a real-valued function defined on A .

Problem 1 :

Let

w(x, y, z) = 1/√(x2+y2+z2), (x, y, z) β‰  (0, 0, 0).

Show that (βˆ‚2w/βˆ‚x2) + (βˆ‚2w/βˆ‚y2(βˆ‚2w/βˆ‚z2)

Solution :

Given :

w(x, y, z) = 1/√(x2+y2+z2)

βˆ‚w/dx  =  -1/2(x2+y2+z2)(3/2)(2x)

βˆ‚w/dx  =  -x/(x2+y2+z2)(3/2)

u = -x and v = (x2+y2+z2)(3/2)

u' = -1 and v' = (3/2)(x2+y2+z2)1/2 (2x)

v' = 3x(x2+y2+z2)1/2

(1) + (2) + (3)

=  (2x2-y2-z2-x2+2y2-z2-x2-y2+2z2)/(x2+y2+z2)5/2

=  0

Problem 2 :

If V(x, y) = ex(x cos y - y sin y), then prove that 

βˆ‚2w/βˆ‚x2  = βˆ‚2w/βˆ‚y2

Solution :

Differentiating with respect to x.

βˆ‚w/βˆ‚x  =  ex(cos y - 0) + (x cos y - y sin y)ex

βˆ‚w/βˆ‚x =  ex [cos y + x cos y - y sin y]

Differentiate with respect to x.

βˆ‚2w/βˆ‚x=  e[0 + x (-sin y) + cos y (1) - 0]

βˆ‚2w/βˆ‚x=  e[-x sin y + cos y] ----(1)

Differentiating with respect to y.

βˆ‚w/βˆ‚y  =  ex(-xsiny - [y(cosy) + sin y (1)] )

βˆ‚w/βˆ‚y =  e[-xsiny - ycosy + sin y] 

Differentiate with respect to x.

βˆ‚w/βˆ‚y =  e[-xsiny - ycosy + sin y] 

βˆ‚2w/βˆ‚y=  e[-xcosy -y(sin y) + cosy(1)+ + cos y

0 + x (-sin y) + cos y (1) - 0]

βˆ‚2w/βˆ‚x=  e[-x sin y + cos y] ----(2)

(1)  =  (2)

Problem 3 :

If w(x, y) = xy + sin(xy) , then prove that

βˆ‚2w/βˆ‚yβˆ‚x  = βˆ‚2w/βˆ‚xβˆ‚y

Solution :

Differentiating with respect to y. 

βˆ‚w/βˆ‚y = x(1) + cos(xy)(x) 

βˆ‚w/βˆ‚y = x + xcos(xy)

βˆ‚w/βˆ‚y = x[1 + cos(xy)]

Differentiating with respect to x. 

βˆ‚2w/βˆ‚yβˆ‚x  =  x[0-sin(xy)(y)]+[1 + cos(xy)](1)

βˆ‚2w/βˆ‚yβˆ‚x  =  -xysin(xy) + 1 + cos(xy)

βˆ‚2w/βˆ‚yβˆ‚x  =  1 + cos(xy) -xysin(xy) ----(1)

Differentiating with respect to x. 

Given : w(x, y) = xy + sin(xy)

βˆ‚w/βˆ‚x = y + cos(xy)(y) 

βˆ‚w/βˆ‚x = y + ycos(xy)

βˆ‚w/βˆ‚x = y[1+cos(xy)]

Differentiating with respect to y. 

βˆ‚2w/βˆ‚xβˆ‚y  =  y[0-sin(xy)(x)]+[1 + cos(xy)](1)

βˆ‚2w/βˆ‚xβˆ‚y  =  -xysin(xy) + 1 + cos(xy) ----(2)

(1)  =  (2)

βˆ‚2w/βˆ‚xβˆ‚y  =  1 + cos(xy) -xysin(xy)

Problem 4 :

If V(x, y, z)  =  x3+y3+z3+3xyz, show that 

βˆ‚2v/βˆ‚yβˆ‚z  = βˆ‚2v/βˆ‚zβˆ‚y

Solution :

Given : V(x, y, z)  =  x3+y3+z3+3xyz

βˆ‚v/βˆ‚y = 0+3y2+0+3xz

βˆ‚v/βˆ‚y = 3y2+3xz

βˆ‚2v/βˆ‚yβˆ‚z = 0+3x(1)

βˆ‚2v/βˆ‚yβˆ‚z = 3x  ------(1)

Given : V(x, y, z)  =  x3+y3+z3+3xyz

βˆ‚v/βˆ‚z = 0+0+3z2+0+3xy

βˆ‚v/βˆ‚z = 3z2+3xy

βˆ‚2v/βˆ‚zβˆ‚y = 0+3x(1)

βˆ‚2v/βˆ‚yβˆ‚z = 3x -----(2)

(1)  =  (2)

Problem 5 :

A firm produces two types of calculators each week, x number of type A and y number of type B . The weekly revenue and cost functions (in rupees) are

R(x, y) = 80x + 90y + 0.04xy βˆ’ 0.05x2 βˆ’ 0.05y2 and

C(x, y) = 8x + 6y + 2000 respectively.

(i) Find the profit function P(x, y) ,

(ii) Find βˆ‚P/βˆ‚x (1200, 1800) and βˆ‚P/βˆ‚y (1200, 1800) and interpret these results.

Solution :

To find profit function, we will subtract cost function from revenue function.

P(x, y) = R(x, y) - C(x, y)

= (80x + 90y + 0.04xy βˆ’ 0.05x2 βˆ’ 0.05y2)-(8x + 6y + 2000)

P(x, y) = (72x + 84y + 0.04xy βˆ’ 0.05x2 βˆ’ 0.05y2- 2000)

βˆ‚P/βˆ‚x = 72+0.04yβˆ’0.1x

βˆ‚P/βˆ‚x at (1200, 1800) = 72+0.04(1800)βˆ’0.1(1200)

=  72+72-120

=  24

The profit increases.

βˆ‚P/βˆ‚y = 84+0.04x-0.1y

βˆ‚P/βˆ‚x at (1200, 1800) = 84+0.04(1200)-0.1(1800)

=  84+48-180

= 132-144

= -48

The profit decreases.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More