FIND THE PRODUCT OF RATIONAL EXPRESSIONS

How to multiply the rational expressions ?

If A/B and C/D are rational expressions and B and D are non-zero then,

Step 1 :

If the given two rational expressions are based multiplied, we have to multiply the numerator and numerator and multiply the denominator by the denominator.

Step 2 :

If it is possible do factoring and using algebraic identities find factors and simplify.

Step 3 :

After cancelling as much as possible, the left overs are answer.

Note :

Sometimes it may be necessary to use factorization and algebraic identities.

Problem 1 :

Solution :

Multiply numerators and denominators.

= (8x3/5x) ⋅ (10/x)

Simplifying 10 and 5, we get

(8x3/5x) ⋅ (2/x)

= 16x

Problem 2 :

Solution :

Multiply numerators and denominators.

= (5x2 y/6) ⋅ (2 / xy3)

= (5x2 y/6) ⋅ (2 / xy3)

= 5x/3y2

Problem 3 :

Solution :

x4 - 81 = x4 - 34

= (x2)2 - (32)2

= (x2)2 - 92

= (x2 - 9)(x2 + 9)

= (x2 - 32)(x2 + 9)

= (x + 3)(x - 3)(x2 + 9)

x4 - 16 = x4 - 24

= (x2)2 - (22)2

= (x2)2 - 42

= (x2 - 4)(x2 + 4)

= (x2 - 22)(x2 + 4)

= (x + 2)(x - 2)(x2 + 4)

(x4 - 81 / x4 - 16) ⋅ (x2 + 4)/(x2 - 9)

= [(x + 3)(x - 3)(x2 + 9)/(x + 2)(x - 2)(x2 + 4)] ⋅[ (x2 + 4)/(x2 - 9)]

= (x2 + 9)/(x + 2)(x - 2)

Problem 4 :

Solution :

4a2 - a - 3 = 4a2 - 4a + 3a - 3

= 4a(a - 1) + 3(a - 1)

= (4a + 3)(a - 1)

4a - 4 = 4(a - 1)

[10a24a2 - a - 3] ⋅ [(4a - 4) / 2a]

[10a2(4a + 3)(a - 1)⋅ [4(a - 1) / 2a]

= 5a(4)/(4a + 3)

= 20a / (4 a + 3)

Problem 5 :

Solution :

a2 - 25 = a2 - 52

= (a + 5)(a - 5)

a2 - 2a = a(a - 2)

a2 + 3a - 10 = a2 + 5a - 2a - 10 

= a(a + 5) - 2(a + 5)

= (a + 5)(a - 2)

[a2 - 25 / a2] ⋅ [a2 - 2a / (a2 + 3a - 10)]

= [(a + 5)(a - 5) a2] ⋅ [a(a - 2)/(a + 5)(a - 2)]

After cancelling common factors, we get

= (a - 5)/a

Problem 6 :

Solution :

[(t2) / (t2 - 3t)] ⋅ [(t2 - 7t + 12) / (t2 - 16)]

t2 - 3t = t(t - 3)

t2 - 7t + 12 = t2 - 4t - 3t + 12 

= t(t - 4) - 3(t - 4)

= (t - 3)(t - 4)

t2 - 16 = t2 - 42

= (t + 4)(t - 4)

[(t2) / (t2 - 3t)] ⋅ [(t2 - 7t + 12) / (t2 - 16)]

[(t2) /t (t - 3)] ⋅ [(t - 3)(t - 4)/(t + 4)(t - 4)]

After cancelling common factors, we get

= t/(t + 4)

Problem 7 :

Solution :

x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 5)(x + 3)

x2 - 1 = x2 - 12

= (x + 1)(x - 1)

= [(x + 5)(x + 3) / (x + 1)(x - 1)] ⋅ [(x + 1) / (x + 5)]

= (x + 3) / (x - 1)

Problem 8 :

Solution :

6b + 6 = 6 (b + 1)

b2 - 8b + 15 = b2 - 5b - 3b + 15

= b(b - 5) - 3(b - 5)

= (b - 3)(b - 5)

b2 - b - 2 = b2 - 2b + b - 2

= b(b - 2) + 1(b - 2)

= (b + 1)(b - 2)

Applying these factors in the rational expression, we get

= [6 (b + 1)/(b - 3)] (b - 3)(b - 5)/(b + 1)(b - 2)]

= 6(b - 5) / (b - 2)

Problem 9 :

[(x + 4) / (3x + 4y)] ⋅ [(9x2 - 16y2)/(2x + 3x -20)]

Solution :

9x2 - 16y2 = 32x2 - 42y2

= (3x)2 - (4y)2

= (3x + 4y)  (3x - 4y)

22x  + 3x -v 2

+ 3x -202

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More