FIND THE MAXIMUM AND MINIMUM VALUES OF THE FUNCTION EXAMPLES

The value of the function at a maximum point is called the maximum value of the function and the value of the function at a minimum point is called the minimum value of the function.

  • Differentiate the given function.
  • let f'(x)  =  0 and find critical numbers
  • Then find the second derivative f''(x).
  • Apply those critical numbers in the second derivative.
  • The function f (x) is maximum when f''(x) < 0
  • The function f (x) is minimum when f''(x) > 0
  • To find the maximum and minimum value we need to apply those x values in the given function.

Question 1 :

Find the maximum and minimum value of the function

2x3 - 15x2 + 36x + 18

Solution :

Let y  =  f(x)  =  2x3 - 15x2 + 36x + 18

f'(x)  =  2(3x2) - 15 (2x) + 36 (1) + 0

f'(x)  =  6x² - 30x + 36

f'(x)  =  0

6x² - 30x + 36  =  0

÷ by 6 => x² - 5 x + 6  =  0

x - 2  =  0

x  =  2

x - 3  =  0

x  =  3

f'(x)  =  6x² - 30x + 36

f''(x)  =  6(2x) - 30 (1) + 0 

f''(x)  =  12 x - 30

Put  x = 2

f''(2)  =  12(2) - 30

  =  24 - 30

 f''(2)  =  -6  <  0 Maximum

To find the maximum value let us apply x = 2 in the given function.

f(2)  =  2 (2)³ - 15 (2)² + 36 (2) + 18

  =  2(8) - 15(4) + 72 + 18

  =  16 - 60 + 72 + 18

  =  106 - 60 

f(2)  =  46

Put x  =  3

f''(3)  =  12(3) - 30

  =  36 - 30

f''(3)  =  6 > 0 Minimum

To find the minimum value let us apply x = 3 in the given function.

f (3)  =  2 (3)³ - 15 (3)² + 36 (3) + 18

  =  2(27) - 15(9) + 108 + 18

  =  54 - 135 + 108 + 18

  =  180 - 135 

  =  45

Therefore the maximum value is 46 and minimum value  is 45.

Question 2 :

Find the maximum and minimum value of the function x3 - 6 x2 + 9 x + 1.

Solution :

Let y  =  f (x)  =  x3 - 6 x2 + 9 x + 1

f'(x)  =  3x² - 6 (2x) + 9 (1) + 0

f'(x)  =  3x² - 12x + 9

f'(x)  =  0

  3x² - 12x + 9 = 0

÷ by 3 => x² - 4 x + 3 = 0

x - 1  =  0

x  =  1

x - 3  =  0

x  =  3

f'(x)  =  3x² - 12x + 9

f''(x)  =  3 (2 x) - 12 (1) + 0

f''(x)  =  6 x - 12

Put  x  =  1

f''(1)  =  6(1) - 12

  =  6 - 12

f''(1)  =  -6 < 0 Maximum

To find the maximum value let us apply x = 1 in the original function

f (x)  =  x³ - 6 x² + 9 x + 1

f (1)  =  (1)³ - 6 (1)² + 9 (1) + 1

  =  1 - 6(1) + 9 + 1

  =  1 - 6 + 10

  =  11 - 6

  =  5

Put  x = 3

f''(3)  =  6(3) - 12

  = 18 - 12

f '' (3) = 6 > 0 Minimum

To find the minimum value let us apply x = 3 in the original function

f(x)  =  x3 - 6x2 + 9x + 1

f (3)  =  33 - 6 (3)2 + 9 (3) + 1

  =  27 - 6(9) + 27 + 1

  =  54 + 1 - 54

  =  1

Therefore the maximum value is 5 and minimum value is 1.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 157)

    May 05, 25 10:57 AM

    digitalsatmath195.png
    Digital SAT Math Problems and Solutions (Part - 157)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 21)

    May 04, 25 11:49 PM

    apcalculusab20.png
    AP Calculus AB Problems with Solutions (Part - 21)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 156)

    May 04, 25 12:59 AM

    digitalsatmath192.png
    Digital SAT Math Problems and Solutions (Part - 156)

    Read More