FIND THE INDICATED TERMS OF THE ARITHMETIC SEQUENCE

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

nth term of arithmetic progression :

an  =  a + (n - 1)d

Total number of terms :

n  =  [(l - a)/d] + 1

a = first term, d = common difference, n = number of terms and l = last term.

Example 1 :

Given an = 4, d = 2, Sn = -14 find n and a 

Solution :

an = 4 

a + (n - 1) d  =  4

a + (n - 1)2  =  4

a + 2n - 2  =  4

a + 2n  =  6

a  =  6 - 2n  ---(1)

Sn  =  -14

Sn  =  (n/2) [2a + (n - 1)d]

-14  =  (n/2) [2a  + (n - 1)2]

-14  =  (n/2) [2a  + 2n - 2] ----(2)

By applying the value of a in (2), we get

 -14  =  (n/2)[2(6 - 2n) + 2n - 2]

  -28  =  n[12 - 4n + 2n - 2]

  -28  =  n[10 - 2n]

  -28  =  10n - 2n2

2n2 - 10n - 28  =  0

Dividing it by 2, we get

n2 - 5n - 14  =  0

(n - 7) (n + 2)  =  0

n  =  7  or n = -2 (not admissible) 

By applying the value of n in (1), we get

a  =  6 - 2(7)

a  =  6 - 14

a  =  -8

Hence the values of a and n are -8 and 7 respectively.

Example 2 :

Given a = 3, n = 8, Sn = 192 find d

Solution :

Sn  =  192

Sn  =  (n/2) [2a + (n - 1)d]

192  =  (8/2) [2(3) + (8 - 1)d]

192  =  4 [6 + 7d]

192/4  =  6 + 7d

48  =  6 + 7d

48 - 6  =  7d

7d  =  42

d  =  42/7  =  6

Hence the value of d is 6.

Example 3 :

Given l = 28 , S = 144 , and there are total 9 terms. Find a 

Solution :

Let "l" be the last term or nth term of the series.

l  =  tn  =  28

tn  =  a + (n - 1)d

a + (9 - 1)d  =  28

a + 8d  =  28 ----(1)

S9  =  144

Sn  =  (n/2) [2a + (n - 1)d]

(n/2) [2a + (n - 1)d]  =  144

(9/2) [2a + 8d]  =  144

[2a + 8d]  =  144  (2/9)

2a + 8d  =  32

a + 4d  =  16  ------(2)

(1) - (2)

a + 8d  =  28

a + 4d  =  16

(-)     (-)    (-)

---------------

4d  =  12

d  =  3

By applying the value of d in (1), we get

a + 8(3)  =  28

a + 24  =  28

a  =  28 - 24  =  4

Hence the first term is 4.

Example 4 :

Here are the nth terms of 4 sequences.

Sequence 1

Sequence 2

Sequence 3

Sequence 4

nth term

nth term

nth term

nth term

4n + 3

7n + 1

14n

8n - 1

For each sequence state whether the numbers in the sequence are

A    Always multiples of 7

S    Sometimes multiples of 7

N    Never multiples of 7

Sequence 1 ...............

Sequence 2 ...............

Sequence 3 ...............

Sequence 4 ...............

Solution :

Sequence 1 :

nth term = 4n + 3

When n = 1

= 4(1) + 3

= 4 + 3

= 7

When n = 2

= 4(2) + 3

= 8 + 3

= 11

When n = 3

= 4(3) + 3

= 12 + 3

= 15

Some times it must be the multiple of 7.

Sequence 2 :

nth term = 7n + 1

When n = 1

= 7(1) + 1

= 7 + 1

= 8

When n = 2

= 7(2) + 1

= 14 + 1

= 15

When n = 3

= 7(3) + 1

= 21 + 1

= 22

This will never become a multiple of 7.

Sequence 3 :

nth term = 14n

When n = 1

= 14(1)

= 14

When n = 2

= 14(2)

= 28

When n = 3

= 14(3)

= 42

Some times it may a multiple of 7.

Sequence 4 :

nth term = 8n - 1

When n = 1

= 8(1) - 1

= 7

When n = 2

= 8(2) - 1

= 15

When n = 3

= 8(3) - 1

= 23

It will never become multiple of 7.

Example 5 :

Can you spot any mistakes?

8, 15, 22, 29, ................

A sequence of numbers is shown below.

a)  Find the expression for the nth term of the sequence.

b)  Explain why 96 will not be the term of the sequence.

Solution :

a)  8, 15, 22, 29, ................

tn  =  a + (n - 1)d

a = 8, d = 15 - 8 ==> 7

tn = 8 + (n - 1)7

= 8 + 7n - 7

t= 1 + 7n

b) Let 96 be one of the terms of the sequence.

96 = 8 + (n - 1)7

96 - 8 = (n - 1) 7

88/7 = n - 1

n - 1 = 12.57

n = 12.57 + 1

n = 13.57

Since the value of n is a decimal, 96 cannot be a one of the terms of the sequence.

Example 6 :

Is 205 a term in the sequence 1, 5, 9, 13, ... ... ?

Solution :

tn  =  a + (n - 1)d

a = 1, d = 5 - 1 ==> 4

205 = 1 + (n - 1)4

205 - 1 = (n - 1) 4

4(n - 1) = 204

n - 1 = 204/4

n - 1 = 51

n = 52

Yes 205 is one of the terms of the sequence.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. Solving the HARDEST SAT Math Questions ONLY using Desmos

    Dec 31, 25 05:53 AM

    Solving the HARDEST SAT Math Questions ONLY using Desmos

    Read More

  2. Times Table Shortcuts

    Dec 30, 25 07:14 PM

    multiplicationtricks3.png
    Times Table Shortcuts - Concept - Examples

    Read More

  3. 10 Hard SAT Math Questions (Part - 42)

    Dec 30, 25 05:52 AM

    10 Hard SAT Math Questions (Part - 42)

    Read More