FIND THE EQUATIONS OF THE TANGENT AND NORMAL TO THE GIVEN CURVE AT THE INDICATED POINT

Tangent :

The tangent line (or simply tangent) to a plane curve at a given point is the straight line that just touches the curve at that point.

Equation of tangent :

(y-y1)  =  m(x-x1)

Normal :

The normal at a point on the curve is the straight line which is perpendicular to the tangent at that point. The tangent and the normal of a curve at a point are illustrated in the adjoining figure.

Equation of normal :

(y-y1)  =  (-1/m)(x-x1)

Problem 1 :

Find the tangent and normal to the following curves at the given points on the curve.

(i)  y  =  x2 - x4 at (1, 0)

Solution :

y  =  x2 - x4 

Differentiating with respect to x, we get

dy/dx  =  2x-4x3

Slope at (1, 0)

dy/dx  =  2(1)-4(1)3

dy/dx  =  -2

Slope of tangent  =  -2

Slope of normal  =  1/2

Equation of tangent :

(y-y1)  =  m(x-x1)

(y-0)  =  -2(x-1)

y  =  -2x+2

2x+y-2  =  0

So, the equation of tangent is 2x+y-2  =  0.

Equation of normal :

(y-y1)  =  (-1/m)(x-x1)

(y-0)  =  (1/2)(x-1)

2y  =  x-1

x-2y-1  =  0

So, equation of normal is x-2y-1  =  0.

(ii)  y  =  x4+2ex at (0, 2)

Solution :

dy/dx  =  4x3 + 2ex

Slope at (0, 2)

dy/dx  =  4(0)3 + 2e0

dy/dx  =  2

Slope of the tangent  =  2

Slope of the normal  =  -1/2

Equation of tangent :

(y-2)  =  2(x-0)

y-2  =  2x

2x-y+2  =  0

Equation of normal :

(y-2)  =  (-1/2)(x-0)

2(y-2)  =  -x

2y-4  =  -x

x+2y-4  =  0

So, equation of tangent is 2x-y+2  =  0 and equation of normal is x+2y-4  =  0.

(iii)  y  =  x sin x at (π/2, π/2)

Solution :

y  =  x sin x

dy/dx  =  x cos x + sin x (1)

dy/dx  =  x cos x + sin x

dy/dx at (π/2, π/2)

dy/dx  =  π/2 cos π/2 + sin π/2

dy/dx  =  π/2 (0) + 1

dy/dx  =  1

Slope of tangent  =  1

Slope of normal  =  -1

Equation of tangent :

(y - π/2)  =  1(x - π/2)

y - π/2  =  x - π/2

x-y  =  0

Equation of normal :

(y - π/2)  =  -1(x - π/2)

y - π/2  =  -x + π/2

x+y-π  =  0

(iv)  x  =  cost, y  =  2 sin2t at t  =  π/3

Solution :

x  =  cost

dx/dt  =  -sin t

y  =  2 sin2t

dy/dt  =  4 sin t cost

dy/dx  =  (dy/dt) / (dx/dt)

dy/dx  =  4 sin t cost / (-sin t)

dy/dx  =  -4 cost

dy/dx at t  =  π/3  =  -4cos (π/3)

=  -4(1/2)

=  -2

Slope of tangent  =  -2

Slope of normal  =  -1/(-2)  ==>  1/2

x  =  cost

x  =  cos ( π/3)

x  =  1/2

y  =  2 sin2t

y  =  2 sin2(π/3)

y  =  2 (3/4)

y  =  3/2

Equation of tangent :

(y-(3/2))  =  -2(x-(1/2))

(2y-3)  =  -2(2x-1)

2y-3  =  -4x+2

4x+2y-5  =  0

Equation of normal :

(y-(3/2))  =  (1/2)(x-(1/2))

2(2y-3)  =  (2x-1)

4y-6  =  2x-1

2x-4y-1+6  =  0

2x-4y+5  =  0

Problem 2 :

Find the tangent and normal to the curve x3 + y3 = 2xy at (1, 1).

Solution :

x3 + y3 = 2xy

Differentiate with respect to x, we get

3x2 + 3xy2(dy/dx) = 2[x(dy/dx) + y(1)]

3xy2(dy/dx) - 2x(dy/dx) = 2y - 3x2

(dy/dx)(3xy2 - 2x) = 2y - 3x2

(dy/dx) = (2y - 3x2) / (3xy2 - 2x)

Slope of the tangent at (1, 1) :

dy/dx = (2 - 3) / (3 - 2)

= -1

Slope of normal :

= -1/m

= -1/(-1)

= 1

Equation of tangent :

y - y1 = m(x - x1)

y - 1 = -1(x - 1)

y - 1 = -x + 1

x + y - 1 - 1 = 0

x + y = 2

Equation of normal :

y - y1 = -1/m(x - x1)

y - 1 = 1(x - 1)

y - 1 = x - 1

x - y - 1 + 1 = 0

x - y = 0

Problem 3 :

Consider the curve defined by 2y3 + 6x2 y - 12x2 + 6y = 1

i) Find dy/dx

ii)  Write an equation of each horizontal tangent line to the curve.

iii) The line through the origin with slope -1 is tangent to the curve at point P. Find the x and y coordinate of P.

Solution :

2y3 + 6x2 y - 12x2 + 6y = 1

i)  

2(3y2 dy/dx) + 6[2x y + x2 (dy/dx)] - 12(2x) + 6(dy/dx) = 0

(6y2 dy/dx) + 12x y + 6x2 (dy/dx) - 24x + 6(dy/dx) = 0

dy/dx(6y2  + 6x2 + 6) = - 12xy + 24x

dy/dx = (- 12xy + 24x) / (6y2 + 6x2 + 6)

dy/dx = 6(- 2xy + 4x) / 6(y2 + x2 + 1)

dy/dx = (- 2xy + 4x) / (y2 + x2 + 1)

ii)  Equation of horizontal tangent :

For horizontal tangent, the slope = 0

(- 2xy + 4x) / (y2 + x2 + 1) = 0

-2xy + 4x = 0

-2x(y - 2) = 0

x = 0 and y = 2

When x = 0,

2y3 + 6(0)2 y - 12(0)2 - 6y = 1

2y3 - 6y = 1

When y = 2

2(2)3 + 6x2 (2) - 12x2 + 6(2) = 1

16 + 12x2 - 12x2 + 12 = 1

There are no points on the curve where y = 2.

iii) The line passes through origin will be y = x

Since it has the slope -1, it must be falling line and the required line will be y = -x

(- 2xy + 4x) / (y2 + x2 + 1) = -1

Applying y = -x, we get

(2x2 + 4x) / (x2 + x2 + 1) = -1

2x2 + 4x = -x2 - x2 - 1

2x2 + 4x = -2x2 - 1

4x2 + 4x + 1 = 0

(2x + 1)2 = 0

2x + 1 = 0

2x = -1

and x = -1/2

y = 1/2

So, the required point is (-1/2, 1/2).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 167)

    May 22, 25 09:59 AM

    digitalsatmath211.png
    Digital SAT Math Problems and Solutions (Part - 167)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 23)

    May 21, 25 01:19 PM

    apcalculusab22.png
    AP Calculus AB Problems with Solutions (Part - 23)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 166)

    May 21, 25 05:33 AM

    digitalsatmath210.png
    Digital SAT Math Problems and Solutions (Part - 166)

    Read More