FIND THE DISTANCE  BETWEEN TWO POINTS USING FORMULA

Let (x1, y1) and (x2, y2) be the two points as shown below. 

Then, the formula for the distance between the two points is 

√[(x2 - x1)2 + (y2 - y1)2]

Practice Questions

Question 1 :

Find the distance between the following pairs of points.

(1, 2) and (4, 3)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(4 - 1)2 + (2 - 3)2

  =  √32 + (-1)2

  =  √(9 + 1)

  =  √10

Question 2 :

Find the distance between the following pairs of points.

(3, 4) and (– 7, 2)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(-7 - 3)2 + (2 - 4)2

  =  √(-10)2 + (-2)2

  =  √(100 + 4)

  =  √104

=  2 √26

Question 3 :

Find the distance between the following pairs of points.

(a, b) and (c, b)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(c - a)2 + (b - b)2

  =  √(c - a)2 + 02

  =  (c - a)

Question 4 :

Find the distance between the following pairs of points.

(3, -9) and (-2, 3)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(-2 - 3)2 + (3 - (-9))2

  =  √(-5)2 + (3+9)2

  =  √25 + 144

  =  √169

  =  13

Question 5 :

Determine whether the given set of points in each case are collinear or not.

(7, –2),(5, 1),(3, 4)

Answer :

Let the given points be A (7, –2) B (5, 1) and C (3, 4)

Distance between the points A and B :

  =  √(5 - 7)2 + (1 - (-2))2

  =  √(-2)2 + (1+2)2

  =  √4 + 9

  =  √13

Distance between the points B and C :

  =  √(3 - 5)2 + (4 - 1)2

  =  √(-2)2 + (3)2

  =  √4 + 9

  =  √13

Distance between the points C and A :

  =  √(3 - 7)2 + (4 - (-2))2

  =  √(-4)2 + (6)2

  =  √16 + 36

  =  √52

=  2√13

√13 + √13  =  2√13

So, the given points are collinear.

Question 6 :

Determine whether the given set of points in each case are collinear or not.

(a, –2), (a, 3), (a, 0)

Answer :

Let the given points be A (a, –2) B (a, 3) and C (a, 0)

Distance between the points A and B :

  =  √(a - a)2 + (3 - (-2))2

  =  √0 + (5)2

  =  √0 + 25

  =  √25

=  5

Distance between the points B and C :

  =  √(a - a)2 + (0 - 3)2

  =  √(0)2 + (3)2

  =  √9

  =  3

Distance between the points C and A :

  =  √(a - a)2 + (0 - (-2))2

  =  √(0)2 + (2)2

  =  √4

  =  2

BC + CA  =  AB

3 + 2  =  5

5  =  5

So, the given points are collinear.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 165)

    May 19, 25 01:06 PM

    digitalsatmath208.png
    Digital SAT Math Problems and Solutions (Part - 165)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 22)

    May 18, 25 07:46 AM

    apcalculusab21.png
    AP Calculus AB Problems with Solutions (Part - 22)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 164)

    May 17, 25 07:24 AM

    Digital SAT Math Problems and Solutions (Part - 164)

    Read More