FIND THE DISTANCE  BETWEEN TWO POINTS USING FORMULA

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Let (x1, y1) and (x2, y2) be the two points as shown below. 

Then, the formula for the distance between the two points is 

√[(x2 - x1)2 + (y2 - y1)2]

Practice Questions

Question 1 :

Find the distance between the following pairs of points.

(1, 2) and (4, 3)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(4 - 1)2 + (2 - 3)2

  =  √32 + (-1)2

  =  √(9 + 1)

  =  √10

Question 2 :

Find the distance between the following pairs of points.

(3, 4) and (– 7, 2)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(-7 - 3)2 + (2 - 4)2

  =  √(-10)2 + (-2)2

  =  √(100 + 4)

  =  √104

=  2 √26

Question 3 :

Find the distance between the following pairs of points.

(a, b) and (c, b)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(c - a)2 + (b - b)2

  =  √(c - a)2 + 02

  =  (c - a)

Question 4 :

Find the distance between the following pairs of points.

(3, -9) and (-2, 3)

Answer :

Distance between two points  =  √(x2 - x1)2 + (y2 - y1)2

  =  √(-2 - 3)2 + (3 - (-9))2

  =  √(-5)2 + (3+9)2

  =  √25 + 144

  =  √169

  =  13

Question 5 :

Determine whether the given set of points in each case are collinear or not.

(7, –2),(5, 1),(3, 4)

Answer :

Let the given points be A (7, –2) B (5, 1) and C (3, 4)

Distance between the points A and B :

  =  √(5 - 7)2 + (1 - (-2))2

  =  √(-2)2 + (1+2)2

  =  √4 + 9

  =  √13

Distance between the points B and C :

  =  √(3 - 5)2 + (4 - 1)2

  =  √(-2)2 + (3)2

  =  √4 + 9

  =  √13

Distance between the points C and A :

  =  √(3 - 7)2 + (4 - (-2))2

  =  √(-4)2 + (6)2

  =  √16 + 36

  =  √52

=  2√13

√13 + √13  =  2√13

So, the given points are collinear.

Question 6 :

Determine whether the given set of points in each case are collinear or not.

(a, –2), (a, 3), (a, 0)

Answer :

Let the given points be A (a, –2) B (a, 3) and C (a, 0)

Distance between the points A and B :

  =  √(a - a)2 + (3 - (-2))2

  =  √0 + (5)2

  =  √0 + 25

  =  √25

=  5

Distance between the points B and C :

  =  √(a - a)2 + (0 - 3)2

  =  √(0)2 + (3)2

  =  √9

  =  3

Distance between the points C and A :

  =  √(a - a)2 + (0 - (-2))2

  =  √(0)2 + (2)2

  =  √4

  =  2

BC + CA  =  AB

3 + 2  =  5

5  =  5

So, the given points are collinear.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  2. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More

  3. 10 Hard SAT Math Questions (Part - 3)

    Jan 05, 26 06:34 PM

    digitalsatmath378.png
    10 Hard SAT Math Questions (Part - 3)

    Read More