FIND SLOPE OF THE LINE CONTAINING THE GIVEN POINTS

If (x1, y1) and (x2, y2) are any two points on a line, with the condition x≠ x2, then the slope of the line is

m  =  (y2 − y1) / (x2 − x1)

Problem 1 :

Find the slope of the line that contains the points (3, 4) and (7, 13).

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (3, 4) and (x2, y2)  ==>  (7, 13)

m  =  (14 - 4)/(7 - 3)

m  =  10/4

m  =  5/2

Problem 2 :

Find the slope of the line that contains the points (2, 11) and (6,−5).

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (2, 11) and (x2, y2)  ==>  (6, -5)

m  =  (-5 - 11)/(6 - 2)

m  =  -16/4

m  =  -4

Problem 3 :

Find a number t such that the line containing the points (1, t) and (3, 7) has slope 5.

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (1, t) and (x2, y2)  ==>  (3, 7)

m  =  5

5  =  (7 - t)/(3 - 1)

5  =  (7 - t)/2

10  =  7 - t

t  =  7 - 10

t  =  -3

Problem 4 :

Find a number c such that the line containing the points (c, 4) and (−2, 9) has slope −3.

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (c, 4) and (x2, y2)  ==>  (-2, 9)

m  =  -3

-3  =  (9-4)/(-2-c)

-3  =  -5/(2 + c)

3(2 + c)  =  5

6 + 3c  =  5

3c  =  -1

c  =  -1/3

Problem 5 :

Find a number t such that the point (3, t) is on the line containing the points (7, 6) and (14, 10).

Solution :

From the given question, we know that all the three points lie on the same line.

Slope of line with the points (3, t) and (7, 6) will be equal to the slope of the line with the points (7, 6) and (14, 10).

Slope m  =  (y2 - y1)/ (x2 - x1)

(3, t) and (7, 6)

m  =  (6 - t)/(7 - 3)

m  =  (6 - t)/4 -----(1)

(7, 6) and (14, 10)

m  =  (10 - 6)/(14 - 7)

m  =  4/7 -----(2)

(6 - t)/4  =  4/7

7(6 - t)  = 16

42 - 7t  =  16

42 - 16  =  7t

7t  =  26

t  =  26/7

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 196)

    Jun 28, 25 09:20 PM

    Digital SAT Math Problems and Solutions (Part - 196)

    Read More

  2. Fundamentals of Business Mathematics

    Jun 27, 25 09:33 PM

    Fundamentals of Business Mathematics

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 195)

    Jun 27, 25 08:39 AM

    Digital SAT Math Problems and Solutions (Part - 195)

    Read More