FIND SLOPE OF THE LINE CONTAINING THE GIVEN POINTS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If (x1, y1) and (x2, y2) are any two points on a line, with the condition x≠ x2, then the slope of the line is

m  =  (y2 − y1) / (x2 − x1)

Problem 1 :

Find the slope of the line that contains the points (3, 4) and (7, 13).

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (3, 4) and (x2, y2)  ==>  (7, 13)

m  =  (14 - 4)/(7 - 3)

m  =  10/4

m  =  5/2

Problem 2 :

Find the slope of the line that contains the points (2, 11) and (6,−5).

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (2, 11) and (x2, y2)  ==>  (6, -5)

m  =  (-5 - 11)/(6 - 2)

m  =  -16/4

m  =  -4

Problem 3 :

Find a number t such that the line containing the points (1, t) and (3, 7) has slope 5.

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (1, t) and (x2, y2)  ==>  (3, 7)

m  =  5

5  =  (7 - t)/(3 - 1)

5  =  (7 - t)/2

10  =  7 - t

t  =  7 - 10

t  =  -3

Problem 4 :

Find a number c such that the line containing the points (c, 4) and (−2, 9) has slope −3.

Solution :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (c, 4) and (x2, y2)  ==>  (-2, 9)

m  =  -3

-3  =  (9-4)/(-2-c)

-3  =  -5/(2 + c)

3(2 + c)  =  5

6 + 3c  =  5

3c  =  -1

c  =  -1/3

Problem 5 :

Find a number t such that the point (3, t) is on the line containing the points (7, 6) and (14, 10).

Solution :

From the given question, we know that all the three points lie on the same line.

Slope of line with the points (3, t) and (7, 6) will be equal to the slope of the line with the points (7, 6) and (14, 10).

Slope m  =  (y2 - y1)/ (x2 - x1)

(3, t) and (7, 6)

m  =  (6 - t)/(7 - 3)

m  =  (6 - t)/4 -----(1)

(7, 6) and (14, 10)

m  =  (10 - 6)/(14 - 7)

m  =  4/7 -----(2)

(6 - t)/4  =  4/7

7(6 - t)  = 16

42 - 7t  =  16

42 - 16  =  7t

7t  =  26

t  =  26/7

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  2. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More

  3. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More