FIND NUMBER OF TERMS IN ARITHMETIC SERIES GIVEN SUM

Find Number of Terms in Arithmetic Series Given Sum :

To find the first term, common difference, number of terms and sum of an arithmetic series, we use one of the formulas given below.

an  =  a + (n - 1)d

Sn  =  (n/2) [a + l] (or)

Sn  =  (n/2) [2a + (n - 1)d]

Find Number of Terms in Arithmetic Series Given Sum - Examples

Question 1 :

Given a = 2 , d = 8, Sn = 90 find n and a n

Solution :

S n  =  (n/2) [2a + (n - 1) d]

90  =  (n/2) [2 (2) + (n - 1) 8]

 90 x 2  =  n [4 + 8 n - 8]

 180  =  n [-4 + 8 n]

180  =  -4 n  + 8 n²

8 n² - 4 n - 180  =  0

Divide the whole equation by 4

 2n² - n - 45 = 0

(n - 5) (2 n + 9) = 0

n = 5   or n = -9/2

The number of terms may not be negative or fraction.

a5 =  a + 4 d

a5   =  2 + 4 (8) 

a5  =  2 + 32

a5  =  34

Question 2 :

Given a = 8 , an = 62, Sn = 210 find n and d

Solution :

an  =  a + (n - 1) d

an  =  8 + (n - 1) d

62  =  8 + (n - 1) d

62 - 8  =  (n - 1) d

  54  =  (n - 1) d -----(1)

Sn  =  (n/2) [2a + (n - 1)d]

210 = (n/2) [ 2 (8) + (n - 1) d]

By applying the value of (n - 1) d in (1), we get

210 = (n/2)[16 + 54]

 210 = (n/2) [70]

 210/70 = (n/2)

3 x 2 = n

n = 6

(n-1) d = 54

 (6-1)d = 54

  5d = 54

     d = 54/5

Question 3 :

Given an = 4, d = 2, Sn = -14 find n and a

Solution :

an = a + (n - 1) d

an = a + (n - 1) (2)

4 = a + 2 n - 2

4 + 2 = a + 2 n

6 = a + 2 n

 a + 2 n = 6 ------(1)

an = l = 4

 Sn = (n/2) [a + l]

-14 = (n/2) [ a + 4]

(-14 x 2) = n [ a + 4]

-28 = n[6- 2 n + 4]

-28 = n [10 - 2 n]

-28 = 10 n - 2 n²

2n² - 10 n - 28 = 0

  n² -  5 n - 14 = 0

 (n - 7) (n + 2) = 0

 n = 7  or n = -2

By applying the value of n in (1), we get

 a + 2(7) = 6

 a + 14 = 6

  a = 6 - 14

 a = -8

After having gone through the stuff given above, we hope that the students would have understood, find number of terms in arithmetic series given sum.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Angular Speed and Linear Speed

    Dec 07, 22 05:15 AM

    Angular Speed and Linear Speed - Concepts - Formulas - Examples

    Read More

  2. Linear Speed Formula

    Dec 07, 22 05:13 AM

    Linear Speed Formula and Examples

    Read More

  3. Angular Speed and Linear Speed Worksheet

    Dec 07, 22 05:08 AM

    Angular Speed and Linear Speed Worksheet

    Read More