FIND DERIVATIVES OF RADICAL FUNCTIONS

To find the derivative of a radical function, first write the radical sign as exponent and find derivative using chain rule. 

Example :

f(x) = √x

f(x) = x1/2

Find derivative with respect to x.

f'(x) = (1/2)x1/2-1(x')

f'(x) = (1/2)x-1/2(1)

= (1/2)(1/x1/2)

= (1/2)(1/x)

= 1/(2x)

Base on the above example, we can derive formula for derivative of a radical function.

Let f(x) = √z. Then derivative f(x) : 

Find the derivative of the following radical functions with respect to x :

Example 1 :

y = √(x + 2)

Solution :

y = √(x + 2)

y' = {1/[2√(x + 2)]}(x + 2)'

y' = {1/[2√(x + 2)]}(1)

y' = 1/[2√(x + 2)]

Example 2 :

y = √(2x - 1)

Solution :

y = √(2x - 2)

y' = {1/[2√(2x - 1)]}(2x - 1)'

y' = {1/[2√(2x - 1)]}(2)

y' = 1/√(2x - 1)

Example 3 :

y = √(3x2 + 5)

Solution :

y = √(3x2 + 5)

y' = {1/[2√(3x2 + 5)]}(3x2 + 5)'

y' = {1/[2√(3x2 + 5)]}(6x)

= 3x/√(3x2 + 5)

Example 4 :

y = √(2x4 + 2x - 1)

Solution :

y = √(2x4 + 2x - 1)

y' = {1/[2√(2x4 + 2x - 1)]}(2x4 + 2x - 1)'

y' = {1/[2√(2x4 + 2x - 1)]}(8x3 + 2)

= (4x3 + 1)/(2x4 + 2x - 1)

Example 5 :

y = (x3 + 2x)√x

Solution :

y = (x+ 2x)√x

Since two x terms are multiplied, we have to use the product rule to find the derivative.

Let u = x+ 2x.

u' = 3x2 + 2(1)

  = 3x2 + 2

Let v = √x.

v' = 1/2√x

Product rule :

(uv)' = uv' + u'v

y' = (x+ 2x)(1/2√x) + (3x2 + 2)√x

= (x3/2√x + 2x/2√x) + 3x2√x + 2√x

= (1/2)x(3-1/2) + x(1 - 1/2) + 3x(2 + 1/2) + 2√x

= (1/2)x5/2 + x1/2 + 3x5/2 + 2√x

= [(1/2) + 3]x5/2 + √x + 2√x

  = (7/2)x5/2 + 3√x

Example 6 :

y = (√x + 2x)/x2 - 1

Solution :

y = (√x + 2x)/x2 - 1

In the above function, we have variable x in both numerator and denominator.

So, we have to use the quotient rule to find the derivative 

Quotient rule :

(u/v)' = (vu' - uv')/v2

Let u = √x + 2x.

u' = 1/2√x + 2(1)

= 1/2√x + 2

Let v = x2 - 1.

v' = 2x - 0

= 2x 

= [(x2 - 1)(1/2√x + 2) - (√x + 2x) (2x)]/(x2 - 1)2

Example 7 :

y = x3  5√(2 - x)

Solution :

y = x3  5√(2 - x)

Let u = x3  and v = (2 - x)1/5

u' = 3x2 and v' = 1/5 (2 - x)1/5 - 1

v' = 1/5 (2 - x)-4/5

d(uv) = uv' + vu'

= x3 (1/5) (2 - x)-4/5 + (2 - x)1/5 (x3)

= x3 [1/5 (2 - x)4/5] + (2 - x)1/5

Example 8 :

y = √(2x - 5) / (7x - 9)

Solution :

y = √(2x - 5) / (7x - 9)

To remove square on both sides, 

y2 = (2x - 5) / (7x - 9)

Using quotient rule, we find the derivative.

u = 2x - 5 and v = 7x - 9

u' = 2(1) - 0 and v' = 7(1) - 0

u' = 2 and v' = 7

2y(dy/dx) = [(7x - 9)(2) - (2x - 5)(7)] / (7x - 9)2

= [14x - 18 - (14x - 35)] / (7x - 9)2

= [14x - 18 - 14x + 35] / (7x - 9)2

2y(dy/dx) = 17/(7x - 9)2

(dy/dx) = (1/2y) [17/(7x - 9)2]

= (1/2√(2x - 5)/(7x - 9)) [17/(7x - 9)2]

= [√(7x - 9)/2√(2x - 5)] [17/(7x - 9)2]

Example 9 :

f(x) = ∛x2 - 1/√x3

Solution :

f(x) = ∛x2 - 1/√x3

f(x) = (x2)1/3 - (x-3)1/2

f(x) = x2/3 - x-3/2

Differentiating with respect to x, we get

= (2/3) x(2/3) - 1 - (3/2) x(-3/2) - 1

= (2/3) x(2 - 3)/3 - (3/2) x(-3 - 2)/2

= (2/3) x-1/3 - (3/2) x-5/2

= [2/3 x1/3] - [3/2x5/2]

Example 10 :

f(x) = 2ex √x

Solution ;

Given that, f(x) = 2ex √x

Using product rulem, we find the derivative.

u = eand v = √x

u' = eand v' = 1/2√x

d(uv) = uv' + vu'

ex (1/2√x) + √xe

Factroing ex, we get

ex [1/2√x + √x]

ex (1 + 2x)/2√x

Example 11 :

Find f'(x) if f(x) = 1/∛(x2 + x + 1)

Solution ;

f(x) = 1/∛(x2 + x + 1)

f(x) = (x2 + x + 1)-1/3

f '(x) = -(1/3)(x2 + x + 1)(-1/3) - 1 (2x + 1)

f '(x) = -(1/3)(2x + 1) (x2 + x + 1)(-4/3)

= -[1/3(2x + 1) (x2 + x + 1)4/3]

Example 12 :

Find f'(x) if f(x) = x/√(7 - 3x)

Solution ;

f(x) = x/√(7 - 3x)

u = x and v = √(7 - 3x) 

u' = 1 and v' = 1/2√(7 - 3x) (0 - 3 (1))

v' = -3/2√(7 - 3x)

d(u/v) = (vu' - uv') / v2

= (√(7 - 3x) (1) - x (-3/2√(7 - 3x))) / [√(7 - 3x)]2

= (2(7 - 3x)  + 3x) /2√(7 - 3x)) / (7 - 3x)

= (14 - 6x + 3x)/2(7 - 3x)√(7 - 3x)

f'(x) = (14 - 3x)/2(7 - 3x)√(7 - 3x)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math : Problems on Exponents and Radicals

    Jun 20, 25 08:15 PM

    SAT Math : Problems on Exponents and Radicals

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 191)

    Jun 20, 25 07:44 PM

    digitalsatmath259.png
    Digital SAT Math Problems and Solutions (Part - 191)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 190)

    Jun 19, 25 08:35 PM

    digitalsatmath257.png
    Digital SAT Math Problems and Solutions (Part - 190)

    Read More