Factor the following cubic polynomials.
Example 1 :
8x3 + 125y3
Solution :
8x3 + 125y3 = (2x)3 + (5y)3
a3 + b3 = (a + b)(a2 - ab + b2)
= (2x + 5y)[(2x)2 - (2x)(5y) + (5y)2]
= (2x + 5y)(4x2 - 10xy + 25y2)
Example 2 :
27x3 - 8y3
Solution :
27x3 - 8y3 = (3x)3 - (2y)3
a3 - b3 = (a - b)(a2 + ab + b2)
= (3x - 2y)[(3x)2 + (3x)(2y) + (2y)2]
= (3x - 2y)(9x2 + 6xy + 4y2)
Example 3 :
a6 - 64
Solution :
a6 - 64 = (a2)3 - 43
a3 - b3 = (a - b)(a2 + ab + b2)
= (a2 - 4)[(a2)2 + a2(4) + 42]
= (a2 - 4)[(a2)2 + 4a2 + 42]
= (a2 - 4)[(a2)2 + 42 + 4a2]
a2 + b2 = (a + b)2 - 2ab
= (a2 - 4)[(a2 + 4)2 - 2(a2)(4) + 4a2]
= (a2 - 4)[(a2 + 4)2 - 8a2 + 4a2]
= (a2 - 4)[(a2 + 4)2 - 4a2]
= (a2 - 22)[(a2 + 4)2 - (2a)2]
a2 - b2 = (a + b)(a - b)
= (a + 2)(a - 2)(a2 + 4 + 2a)(a2 + 4 - 2a)
= (a + 2)(a - 2)(a2 + 2a + 4)(a2 - 2a + 4)
Example 4 :
x3 + 8y3 + 6 xy - 1
Solution :
= x3 + 8y3 + 6xy - 1
= x3 + (2y)3 + (-1)3 - 3(x)(2y)(-1)
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
= (x + 2y - 1)(x2 + 4y2 + 1 - 2xy + 2y - x)
Example 5 :
l3 - 8m3 - 27n3 - 18 lmn
Solution :
= l3 - 8m3 - 27n3 - 18 lmn
= l3 + (-2m)3 + (-3n)3 - 3(1)(-2m)(-3n)
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
= (l - 2m - 3n)(l2 + 4m2 + 9n2 + 2lm - 6mn + 3ln)
So, the factors are (l - 2m - 3n)(l2 + 4m2 + 9n2 + 2lm - 6mn + 3ln)
Example 6 :
16r3 - 6r2 - 56r + 21
Solution :
= 16r3 - 6r2 - 56r + 21
Factoring 2r2 from the first two terms and factoring -7 from the last two terms.
= 2r2 (8r - 3) - 7(8r - 3)
= (2r2 - 7)(8r - 3)
So, the factors are (2r2 - 7)(8r - 3)
Example 7 :
42x3 + 24x2 + 49x + 28
Solution :
= 42x3 + 24x2 + 49x + 28
Factoring 6x2 from the first two terms and factoring 7 from the last two terms.
= 6x2 (7x + 4) + 7(7x + 4)
= (6x2 + 7)(7x + 4)
So, the factors are (6x2 + 7)(7x + 4).
Example 8 :
x3 + 5x2 + 6x
Solution :
= x3 + 5x2 + 6x
Factoring x, we get
= x (x2 + 5x + 6)
= x (x2 + 3x + 2x + 6)
= x [x (x + 3) + 2(x + 3)]
= x (x + 3) (x + 2)
So, the factors are x (x + 3) (x + 2).
Example 9 :
2x3 + 6x2 + 5x + 15
Solution :
= 2x3 + 6x2 + 5x + 15
Factoring 2x2, we get
= 2x2 (x + 3) + 5(x + 3)
= (x + 3) (2x2 + 5)
So, the factors are (x + 3) (2x2 + 5).
Example 10 :
3a3 - 7a2 - 9a + 21
Solution :
= 3a3 - 7a2 - 9a + 21
Factoring a2, we get
= a2 (3a - 7) - 3(3a - 7)
= (3a - 7) (a2 - 3)
So, the factors are (3a - 7) (a2 - 3).
Example 11 :
10n3 - 2n2 - 25n + 5
Solution :
= 10n3 - 2n2 - 25n + 5
Factoring n2, we get
= 2n2 (5n - 1) - 5(5n - 1)
= (5n - 1) (2n2 - 5)
So, the factors are (5n - 1) (2n2 - 5).
Example 12 :
16x4 - 2x
Solution :
= 16x4 - 2x
= 2x (8x3 - 1)
= 2x (23x3 - 1)
= 2x [(2x)3 - 13]
= 2x (2x - 1) ((2x)2 - (2x)(1) + 12)
= 2x (2x - 1) (4x2 - 2x + 1)
So, the factors are 2x (2x - 1) (4x2 - 2x + 1).
Example 13 :
10x4 - 10
Solution :
= 10x4 - 10
= 10(x4 - 1)
= 10((x2)2 - (12)2)
= 10[(x2 + 1)(x2 - 12)]
= 10(x2 + 1)(x + 1)(x - 1)
So, the factors are 10(x2 + 1)(x + 1)(x - 1).
Example 14 :
x2(x - 1) - 9(x - 1)
Solution :
= x2(x - 1) - 9(x - 1)
= (x2 - 9) (x - 1)
= (x2 - 32) (x - 1)
= (x + 3)(x - 3)(x - 1)
So, the factors are (x + 3)(x - 3)(x - 1).
Example 14 :
x3 + 4x2 - 36x - 144
Solution :
= x3 + 4x2 - 36x - 144
= x2 (x + 4) - 36(x + 4)
= (x2 - 36)(x + 4)
= (x2 - 62)(x + 4)
= (x + 6)(x - 6)(x + 4)
So, the factors are (x + 6)(x - 6)(x + 4).
Example 15 :
2x3 - 14x2 + 24x
Solution :
= 2x3 - 14x2 + 24x
= 2x3 - 14x2 + 24x
= 2x(x2 - 7x2 + 12)
= 2x(x2 - 3x - 4x + 12)
= 2x[x(x - 3) - 4(x - 3)]
= 2x(x - 4) (x - 3)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jul 13, 25 09:51 AM
Jul 13, 25 09:32 AM
Jul 11, 25 08:34 AM