FACTORING CUBIC POLYNOMIALS USING IDENTITIES

Factor the following cubic polynomials. 

Example 1 :

8x3 + 125y3

Solution :

 8x3 + 125y= (2x)3 + (5y)3

a3 + b3 = (a + b)(a2 - ab + b2)

= (2x + 5y)[(2x)2 - (2x)(5y) + (5y)2]

= (2x + 5y)(4x2 - 10xy + 25y2

Example 2 :

27x3 - 8y3

Solution :

27x3 - 8y= (3x)3 - (2y)3

 a3 - b3 = (a - b)(a2 + ab + b2)

= (3x - 2y)[(3x)2 + (3x)(2y) + (2y)2

  = (3x - 2y)(9x2 + 6xy + 4y2

Example 3 :

a6 - 64

Solution :

a6 - 64 = (a2)3 - 43

 a3 - b3 = (a - b)(a2 + ab + b2)

= (a2 - 4)[(a2)2 + a2(4) + 42]

= (a2 - 4)[(a2)2 + 4a2 + 42]

= (a2 - 4)[(a2)2 + 4+ 4a2]

a2 + b2 = (a + b)2 - 2ab

= (a2 - 4)[(a2 + 4)2 - 2(a2)(4) + 4a2]

= (a2 - 4)[(a2 + 4)2 - 8a2 + 4a2]

= (a2 - 4)[(a2 + 4)2 - 4a2]

= (a2 - 22)[(a2 + 4)2 - (2a)2]

a2 - b2 = (a + b)(a - b)

= (a + 2)(a - 2)(a2 + 4 + 2a)(a2 + 4 - 2a)

= (a + 2)(a - 2)(a2 + 2a + 4)(a2 - 2a + 4)

Example 4 :

x3 + 8y3 + 6 xy - 1

Solution :

= x3 + 8y3 + 6xy - 1

= x3 + (2y)3 + (-1)3 - 3(x)(2y)(-1)

a3 + b3 + c3 - 3abc = (a + b + c)(a+ b+ c- ab - bc - ca)

= (x + 2y - 1)(x2 + 4y2 + 1 - 2xy + 2y - x)

Example 5 :

l3 - 8m3 - 27n3 - 18 lmn

Solution :

l3 - 8m3 - 27n3 - 18 lmn

= l3 + (-2m)3 + (-3n)3 - 3(1)(-2m)(-3n)

a3 + b3 + c3 - 3abc = (a + b + c)(a+ b+ c- ab - bc - ca)

= (l - 2m - 3n)(l2 + 4m2 + 9n2 + 2lm - 6mn + 3ln)

So, the factors are (l - 2m - 3n)(l2 + 4m2 + 9n2 + 2lm - 6mn + 3ln)

Example 6 :

16r3 - 6r2 - 56r + 21

Solution :

16r3 - 6r2 - 56r + 21

Factoring 2r2 from the first two terms and factoring -7 from the last two terms.

= 2r2 (8r - 3) - 7(8r - 3)

= (2r2 - 7)(8r - 3)

So, the factors are (2r2 - 7)(8r - 3)

Example 7 :

42x3 + 24x2 + 49x + 28

Solution :

42x3 + 24x2 + 49x + 28

Factoring 6x2 from the first two terms and factoring 7 from the last two terms.

= 6x2 (7x + 4) + 7(7x + 4)

= (6x2 + 7)(7x + 4)

So, the factors are (6x2 + 7)(7x + 4).

Example 8 :

x3 + 5x2 + 6x

Solution :

x3 + 5x2 + 6x

Factoring x, we get

= x (x2 + 5x + 6)

= x (x2 + 3x + 2x + 6)

= x [x (x + 3) + 2(x + 3)]

= x (x + 3) (x + 2)

So, the factors are x (x + 3) (x + 2).

Example 9 :

2x3 + 6x2 + 5x + 15

Solution :

2x3 + 6x2 + 5x + 15

Factoring 2x2, we get

= 2x2 (x + 3) + 5(x + 3)

= (x + 3) (2x2 + 5)

So, the factors are (x + 3) (2x2 + 5).

Example 10 :

3a3 - 7a2 - 9a + 21

Solution :

3a3 - 7a2 - 9a + 21

Factoring a2, we get

= a2 (3a - 7) - 3(3a - 7)

= (3a - 7) (a2 - 3)

So, the factors are (3a - 7) (a2 - 3).

Example 11 :

10n3 - 2n2 - 25n + 5

Solution :

10n3 - 2n2 - 25n + 5

Factoring n2, we get

= 2n2 (5n - 1) - 5(5n - 1)

= (5n - 1) (2n2 - 5)

So, the factors are (5n - 1) (2n2 - 5).

Example 12 :

16x4 - 2x

Solution :

16x4 - 2x

= 2x (8x3 - 1)

= 2x (23x3 - 1)

= 2x [(2x)3 - 13]

= 2x (2x - 1) ((2x)2 - (2x)(1) + 12)

= 2x (2x - 1) (4x2 - 2x + 1)

So, the factors are 2x (2x - 1) (4x2 - 2x + 1).

Example 13 :

10x4 - 10

Solution :

10x4 - 10

= 10(x4 - 1)

= 10((x2)2 - (12)2)

= 10[(x2 + 1)(x2 - 12)]

= 10(x2 + 1)(x + 1)(x - 1)

So, the factors are 10(x2 + 1)(x + 1)(x - 1).

Example 14 :

x2(x - 1) - 9(x - 1)

Solution :

x2(x - 1) - 9(x - 1)

= (x2 - 9) (x - 1)

= (x2 - 32) (x - 1)

= (x + 3)(x - 3)(x - 1)

So, the factors are (x + 3)(x - 3)(x - 1).

Example 14 :

x+ 4x2 - 36x - 144

Solution :

x+ 4x2 - 36x - 144

= x2 (x + 4) - 36(x + 4)

= (x2 - 36)(x + 4)

= (x2 - 62)(x + 4)

= (x + 6)(x - 6)(x + 4)

So, the factors are (x + 6)(x - 6)(x + 4).

Example 15 :

2x3 - 14x2 + 24x

Solution :

= 2x3 - 14x2 + 24x

= 2x3 - 14x2 + 24x

= 2x(x- 7x2 + 12)

= 2x(x- 3x - 4x + 12)

= 2x[x(x - 3) - 4(x - 3)]

= 2x(x - 4) (x - 3)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More