FACTORISE INVOLVING EXPONENTIAL FUNCTIONS

What is exponential function ?

An exponential function is defined by

f(x)  =  ax

(where a is greater than 0 but it is not equal to 1 and x is any real number)

Note :

If the variable is negative, the function is undefined for -1 < x < 1.

We can factorize the exponential function by using the laws of exponents.

Factorise the following.

Example 1 :

3n+2 - 9

Solution :

Given, 3n+2 – 9

By using the product rule of exponents

am+n  =  am . an 

=  [(3n . 32) – 9]

=  [(3n . 9) – 9]

=  9(3n – 1)

So, factored form is 9(3n – 1)

Example 2 :

5(2n) + 2n+2

Solution :

=  5(2n) + (2n . 22)

=  5(2n) + (2n . 4)

=  5(2n) + 4(2n)

=  9(2n)

So, factored form is 9(2n)

Example 3 :

3n+2 + 3n+1 + 3n

Solution :

=  (3n . 32) + (3n . 31) + 3n

=  9(3n) + 3(3n) + 1(3n)

=  13(3n)

So, factored form is 13(3n)

Example 4 :

2n+1 + 3(2n) + 2n-1

Solution :

2n+1 + 3(2n) + 2n-1

Using the rule am-n  =  am/an

=  (2n . 21) + 3(2n) + (2n/21)

=  2(2n) + 3(2n) + (2n/21)

=  2n(2+3+1/2)

=  2n[(4+6+1)/2]

=  2n[11/2]

=  11(2n-1)

Example 5 :

4x + 8(2x) + 15

Solution :

=  4x + 8(2x) + 15

By using the power rule in exponents (ax)y  =  axy, we get

=  (22)x + 8(2x) + 15

=  (2x)2 + 8(2x) + 15

Let u  =  2x,

=  u2 + 8u + 15

Now, we have the quadratic equation form,

u2 + 8u + 15

By factorization, we get

(u + 5) (u + 3)

By replacing u  =  2x, we get

(2x + 5) (2x + 3)

So, the factored form is (2x + 5) (2x + 3)

Example 6 :

4x + 6(2x) - 7

Solution :

=  (22)x + 6(2x) - 7

=  (2x)2 + 6(2x) - 7

Let u  =  2x,

=  u2 + 6u - 7

Now, we have the quadratic equation form,

u2 + 6u - 7

By factorization, we get

(u + 7) (u - 1)

Replacing 2x, we get

(2x + 7) (2x - 1)

So, factored form is (2x + 7) (2x - 1)

Example 7 :

9x - 3(3x) - 10

Solution :

Given, 9x - 3(3x) - 10

=  (32)x - 3(3x) - 10

=  (3x)2 - 3(3x) - 10

Let u  =  3x,

=  u2 - 3u - 10

Now, we have the quadratic equation form,

u2 - 3u - 10

By factorization, we get

(u + 2) (u - 5)

By replacing u  =  3x, we get

(3x + 2) (3x - 5)

So, factored form is (3x + 2) (3x - 5)

Example 8 :

9x - 6(3x) + 8

Solution :

Given, 9x - 6(3x) + 8

=  (32)x - 6(3x) + 8

=  (3x)2 - 6(3x) + 8

Let u  =  3x,

u2 - 6u + 8

By factorization, we get

(u - 2) (u - 4)

By replacing u  =  3x, we get

(3x - 2) (3x - 4)

So, the solution is (3x - 2) (3x - 4)

Example 9 :

25x + 4(5x) - 12

Solution :

Given, 25x + 4(5x) - 12

=  (52)x + 4(5x) - 12

=  (5x)2 + 4(5x) - 12

Let u  =  5x,

=  u2 + 4u - 12

Now, we have the quadratic equation form,

u2 + 4u - 12

By factorization, we get

(u - 2) (u + 6)

By replacing u  =  5x, we get

(5x - 2) (5x + 6)

So, the solution is (5x - 2) (5x + 6)

Example 10 :

64x + 3(8x) - 4

Solution :

Given, 64x + 3(8x) - 4

=  (82)x + 3(8x) - 4

=  (8x)2 + 3(8x) - 4

Let u  =  8x,

=  u2 + 3u - 4

Now, we have the quadratic equation form,

u2 + 3u - 4

(u - 1) (u + 4)

By replacing u  =  8x, we get

(8x - 1) (8x + 4)

So, the solution is (8x - 1) (8x + 4).

Example 11 :

4x - 2x - 20

Solution :

Given, 4x - 2x - 20

=  (22)x - (2x) - 20

Let u  =  2x,

=  u2 - u - 20

Now, we have the quadratic equation form,

u2 - u - 20

(u - 5) (u + 4)

By replacing u  =  2x, we get

(2x - 5) (2x + 4)

So, the solution is (2x - 5) (2x + 4).

Example 12 :

25x + 5x - 2

Solution :

Given, 25x + 5x - 2

=  (52)x + (5x) - 2

Let u  =  5x,

u2 + u - 2

Now, we have the quadratic equation form,

u2 + u - 2

(u + 2) (u - 1)

By replacing u  =  5x, we get

(5x + 2) (5x - 1)

So, the solution is (5x + 2) (5x - 1).

Example 13 :

4x + 9(2)x + 18

Solution :

Given, 25x + 5x - 2

=  (52)x + (5x) - 2

Let u  =  5x,

u2 + u - 2

Now, we have the quadratic equation form,

u2 + u - 2

(u + 2) (u - 1)

By replacing u  =  5x, we get

(5x + 2) (5x - 1)

So, the solution is (5x + 2) (5x - 1).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 222)

    Jul 21, 25 04:42 AM

    digitalsatmath312.png
    Digital SAT Math Problems and Solutions (Part - 222)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 221)

    Jul 19, 25 08:17 AM

    digitalsatmath311.png
    Digital SAT Math Problems and Solutions (Part - 221)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 220)

    Jul 19, 25 01:24 AM

    digitalsatmath308.png
    Digital SAT Math Problems and Solutions (Part - 220)

    Read More