FACTORING POLYNOMIALS USING SYNTHETIC DIVISION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

In this section, we use the synthetic division method that helps to factor a cubic polynomial into linear factors. If we identify one linear factor of cubic polynomial p(x) then using synthetic division we can get the quadratic factor of p(x). Further if possible one can factor the quadratic factor into linear factors.

Factor each of the following polynomials using synthetic division :

Example 1 :

x3 - 3x2 - 10x + 24

Solution :

By Substituting x = 2, we get the remainder 0.

So (x - 2) is a factor.

Then, 

x2 - x - 12 = x2 - 4x + 3x - 12

x2 - x - 12 = x(x - 4) + 3(x - 4)

x2 - x - 12 = (x + 3)(x - 4)

Therefore, the factors are (x - 2)(x + 3)(x- 4).

Example 2 :

2x3 - 3x2 - 3x + 2

Solution :

By substituting x = -1, we get the remainder 0.

So (x + 1) is a factor.

Then,

2x2 - 5x + 2 = 2x2 - 4x - x + 2

2x2 - 5x + 2 = 2x(x - 2) - 1(x - 2)

2x2 - 5x + 2 = (2x - 1)(x - 2)

Therefore, the factors are (x + 1)(2x - 1)(x - 2).

Example 3 :

-7x + 3 + 4x3

Solution :

-7x + 3 + 4x3  =  4x3 + 0x2 - 7x + 3

By substituting x = 1, we get the remainder 0.

So (x - 1) is a factor.

Then,

4x2 + 4x - 3 = 4x2 + 6x - 2x - 3

4x2 + 4x - 3 = 2x(2x + 3) - 1(2x + 3)

4x2 + 4x - 3 = (2x - 1)(2x + 3)

Therefore, the factors are (x - 1)(2x - 1)(2x + 3).

Example 4 :

x3 + x2 - 14x - 24

Solution :

By substituting x = -2, we get the remainder 0.

So (x + 2) is a factor.

Then,

x2 - x - 12 = x2 - 4x  + 3x - 12

x2 - x - 12 = x(x - 4) + 3(x - 4)

x2 - x - 12 = (x + 3)(x - 4)

Therefore, the factors are (x + 2)(x + 3)(x - 4).

Example 5 :

x3  - 7x + 6

Solution :

By substituting x = 1, we get the remainder 0.

So (x - 1) is a factor.

Then,

x2 + x - 6 = x2 + 3x  - 2x - 6

x2 + x - 6 = x(x + 3) - 2(x + 3)

x2 + x - 6 = (x + 3)(x - 2)

Therefore, the factors are (x - 2)(x + 3)(x - 1).

Example 6 :

x3 - 10x2 - x + 10

Solution :

By substituting x = 1, we get the remainder 0.

So (x - 1) is a factor.

Then,

x2 - 9x - 10 = x2 - 10x + 1x - 10

x2 - 9x - 10 = x(x - 10) + 1(x - 10)

x2 - 9x - 10 = (x + 1)(x - 10)

Therefore, the factors are (x + 1)(x - 10)(x - 1).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More