EXAMPLES ON VOLUME OF CYLINDER

Subscribe to our 鈻讹笍 YouTube channel 馃敶 for the latest videos, updates, and tips.

We can find the volume V of both a prism and a cylinder by multiplying the height by the area of the base. 

Let the area of the base of a cylinder be B and the height of the cylinder be h. Write a formula for the cylinder鈥檚 volume V.

V = Bh

The base of a cylinder is a circle, so for a cylinder,

B = r2

Then, we have

V = r2h cubic units

Example 1 :

Find the volume of a solid cylinder whose radius is 14 cm and height is 30 cm.

Solution :

We need to find the volume of the solid cylinder.

Radius of the cylinder  =  14 cm

Height of the cylinder  =  30 cm

Volume of the right circular cylinder  = r2h

=  (22/7) 路 (14)2 路 30

=  (22/7) 路 14  路 14 路 30

=  18480 cubic.cm

Volume of the cylinder  =  18480 cubic.cm

Example 2 :

A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm. If the bowl is filled with soup to a height of 4 cm, then find the quantity of soup to be prepared daily in the hospital to serve 250 patients?

Solution :

Radius of the cylinder  =  7/2 cm

Height of the cylinder  =  4 cm

To find quantity of soup in one bowl,  we have to find the quantity of each bowl.

Volume of the right circular cylinder  =  r2h

=  (22/7) 路 (7/2)2  路 4

=  (22/7)  (7/2)  (7/2)  4

=  154 cm3

Volume of soup in one cylindrical bowl  =  154 cm3

Volume of soup in 250 cylindrical bowl  =  250 路 154

=  38500 cm3

1000 cm3  =  1 L

Therefore required quantity of soup  =  38500/1000

=  38.5 L

Required quantity of soup for 25 patients = 38.5 L

Example 3 :

The sum of the base radius and the height of a solid cylinder is 37 cm. If the total surface area of the cylinder is 1628 sq.cm, then find the volume of the cylinder.

Solution :

Let r and h are the radius and height of the cylinder respectively

Sum of radius and height  =  37

r + h  =  37 cm

Total surface area of cylinder  =  1628 sq.cm

2r(h + r)  =  1628

2r(37)  =  1628

2r  =  1628/37

 (22/7)  r = 44

r  =  44  (1/2)  (7/22)

r  =  7

7 + h  =  37

h  =  30 cm

Volume of the right circular cylinder =  r2h

=  (22/7) 7230

=  (22) x (7) x (30)

=  4620 cm3

Volume of cylinder  =  4620 cm3

Example 4 :

The volume of a cylindrical water tank is 1.078 脳 106 litres. If the diameter of the tank is 7 m, find its height.

Solution :

Volume of cylinder = 1.078 脳 106

1000 liter = 1 m3

Diameter = 7 m

= 1.078 脳 103 103

= 1078

radius = 3.5 m

r2h = 1078

3.14 x 3.52 x h = 1078

h = 1078 / (3.14 x 3.52)

= 1078 / (3.14 x 12.25)

h = 28.02

Example 5 :

Find the volume of the iron used to make a hollow cylinder of height 9 cm and whose internal and external radii are 21 cm and 28 cm respectively.

Solution :

Height (h) = 9 cm

External radius (R) = 28 cm

Internal radius (r) = 21 cm

Volume = 蟺h(Rr2)

= 3.14 x 9 x (28- 212)

= 3.14 x 9 x (784 - 441)

= 3.14 x 9 x 343

= 9693.18 cm3

Example 6 :

For the cylinders A and B

volume-of-cylinder-q4.png

(i) find out the cylinder whose volume is greater.

(ii) verify whether the cylinder with greater volume has greater total surface area.

(iii) find the ratios of the volumes of the cylinders A and B.

Solution :

i) 

Volume of cylinder A = r2h

Radius = 7/2 ==> 3.5 cm, height (h) = 21 cm

= 3.14 x 3.5x 21

= 807.765 cm3

Volume of cylinder B = r2h

Radius = 21/2 ==> 10.5 cm, height (h) = 7 cm

= 3.14 x 10.5x 7

= 2423.295 cm3

Cylinder B is greater.

ii) 

Total surface area of cylinder A = 2r(h + r)

= 2 x 3.14 x 3.5 (21 + 3.5)

= 21.98(24.5)

= 538.51 cm2

Approximately the surface area of cylinder A is 539 cm2

Total surface area of cylinder B = 2r(h + r)

= 2 x 3.14 x 10.5 (7 + 10.5)

= 65.94(17.5)

= 1153.95 cm2

Cylinder B has greater volume and greater surface area.

iii)  Volume of cylinder A / Volume of cylinder B

= 808/2423

= 1/3

So, the required ratio is 1 : 3.

Example 7 :

A 14 m deep well with inner diameter 10 m is dug and the earth taken out is evenly spread all around the well to  form an embankment of width 5 m. Find the height of the embankment.

Solution :

height = 14 m

External radius (R) = ?

Inner radius (r) = 10/2 ==> 5 m

Width = 5 m

Width = R - r

5 = R - 5

R = 10 m

Volume of earth in the enbankment = Volume of the well

蟺h(Rr2) = r2h

H x (10- 52) = 52x14

H = (25 x 14)/(100 - 25)

= 350/75

H = 4.67 m

Subscribe to our 鈻讹笍 YouTube channel 馃敶 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  2. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 35)

    Nov 21, 25 07:36 AM

    digitalsatmath407.png
    10 Hard SAT Math Questions (Part - 35)

    Read More