EXAMPLES OF SOLVING A PAIR OF LINEAR EQUATIONS WITH GIVEN CONDITION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If a pair of linear equations is having the types of solutions given below, then it has to meet out the corresponding conditions. 

Types of Solution

unique solution

infinitely many solutions

 no solution

Condition

 a1/a2    b1/b2

 a1/a2  =  a1/a = c1/c2

a1/a2  =  a1/a ≠  c1/c2

Example 1 :

For which values of a and b does the following pair of linear equations have an infinite many solution

2x + 3y = 7

(a – b) x + (a + b) y = 3 a + b – 2

Solution :

Condition for having infinitely many solutions

a₁/a₂  =  b₁/b₂  =  c₁/c₂

2 x + 3 y – 7 = 0 --------(1)

(a – b) x + (a + b) y – (3 a + b – 2) = 0 --------(2)

From the above information let us take the values of a₁ , a₂, b₁, b₂, c₁ and c ₂

 a1  =  2               b1  =  3                      c1  =  -7

 a2  =  (a-b)          b2  =  (a + b)             c2  =  – (3a + b – 2)

2/(a – b)  =  3/(a + b)  =  -7/-(3a + b – 2)

 2/(a – b)  =  3/(a + b)  =  7/(3a + b – 2)

2/(a – b)  =  7/(3a + b – 2)

2(3a + b – 2)  =  7(a – b)

6 a + 2 b – 4  =  7 a – 7 b

6 a – 7 a + 2 b + 7 b  =  4

-a + 9 b  =  4  ----- (3)

3(3a + b – 2)  =  7(a + b)

9 a + 3 b – 6  =  7 a + 7 b

9 a – 7 a + 3 b – 7 b  =  6

2 a – 4 b  =  6 ----- (4)

(3) ⋅ 2 + (4)

-2a + 18b  =  8

2a - 4b  =  6

---------------

14b  =  14

b  =  1

By applying the value of b in (3), we get

-a + 9(1)  =  4

-a + 9  =  4

-a  =  4 - 9

a  =  5

Example 2 :

For which value of k will the following pair of linear equations have no solution

3 x + y = 1

(2k – 1) x + (k – 1) y = 2 k + 1

Solution :

3x + y – 1  =  0  --------(1)

(2k – 1)x + (k – 1)y – (2 k + 1) = 0  --------(2)

Condition for having no solution                           

a₁/a ₂ = b₁/b ₂ ≠ c₁/c ₂

From the above information let us take the values of a₁ , a₂, b₁, b₂, c₁ and c ₂

 a₁ = 3                    b₁ = 1                    c₁ = -1

 a₂ = (2 k - 1)         b₂ = (k - 1)              c₂ = – (2 k + 1)

3/(2 k – 1)  =  1/(k – 1)

3 (k  - 1)  =  1 (2 k- 1)

3 k – 3  =  2 k – 1

3 k – 2 k  =  -1 + 3

k = 2

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More