EXAMPLES OF FINDING THE POINT OF INTERSECTION OF TWO LINES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If two straight lines are not parallel then they will meet at a point.This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Example 1 :

Find the intersection point of the straight lines

4x - 3y  =  3 and 3x + 2y  =  15

Solution :

4x - 3y  =  3   ----- (1)

3x + 2y  =  15 ------(2) 

(1)  2 =>  8x - 6y  =  6

(2)  3 => 9 x + 6 y  =  45

                          8 x - 6 y  =  6

                          9 x + 6 y  =  45

                       --------------------

                          17x  =  51 

                          x  =  51/17

                          x  =  3

By applying x = 3 in (1), we get

8(3) - 6y  =  6

24 - 6y  =  6

-6y  =  6 - 24

-6 y  =  -18

y  =  3

So the point of intersection of the straight lines is (3, 3).

Example 2 :

Find the intersection point of the straight lines

3x + 2y  =  11 and 7x - 3y  =  41

Solution :

3x + 2y  =  11 ----- (1)

7x - 3y  =  41  ------(2) 

(1)  3 =>  9x + 6y  =  33

(2)  2 =>  14 x - 6 y  =  82

9x + 6y  =  33

14x - 6y  =  82

--------------------

23x  =  115 

x  =  115/23

x  =  5

By applying x = 5 in (1), we get

3(5) + 2y  =  11

15 + 2y  =  11

y  =  11 - 15

2y  =  -4

y  =  -2

So the point of intersection of the given straight lines is (5, -2).

Example 3 :

Find the intersection point of the straight lines

5x + 3y  =  11 and 3x + 5y  =  -3

Solution :

5x + 3y  =  11  ----- (1)

3x + 5y  =  -3 ------(2) 

(1)  5 => 25 x + 15 y = 55

(2)  3 => 9 x + 15 y = -9

25 x + 15 y = 55

9 x + 15 y = -9

(-)     (-)    (+)

--------------------

16x  =  64 

x  =  4

By applying x = 4 in (1), we get

5(4) + 3y  =  11

20 + 3y  =  11

3y  =  11 - 20

3y  =  -9

y = -3

So the intersection point of the straight lines is (4,-3).

Example 4 :

Find the intersection point of the straight lines

2x - y  =  15 and 5x + 3y  =  21

Solution :

2x - y  =  15   ----- (1)

5x + 3y  =  21 ------(2) 

(1)  3 => 6x - 3y  =  45

6x - 3y  =  45

5x + 3y  =  21

--------------------

11x  =  66 

x  =  6

By applying x = 6 in (1), we get

2(6) - y  =  15

12 -  y  =  15

y  =  -3

So the point of intersection of the given straight lines is (6, -3).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Dilation Transformation

    Feb 07, 26 08:30 PM

    dilation.png
    Dilation Transformation - Concept - Rule - Examples with step by step explanation

    Read More

  2. SAT Math Practice Problems Hard

    Feb 07, 26 07:37 PM

    digitalsatmath423.png
    SAT Math Practice Problems Hard

    Read More

  3. SAT Math Practice Hard Questions

    Feb 07, 26 08:28 AM

    SAT Math Practice Hard Questions

    Read More