EXAMPLES OF FINDING THE POINT OF INTERSECTION OF TWO LINES

Examples of Finding the Point of Intersection of Two Lines :

If two straight lines are not parallel then they will meet at a point.This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Examples of Finding the Point of Intersection of Two Lines

Example 1 :

Find the intersection point of the straight lines

4x - 3y  =  3 and 3x + 2y  =  15

Solution :

4x - 3y  =  3   ----- (1)

3x + 2y  =  15 ------(2) 

(1)  2 =>  8x - 6y  =  6

(2)  3 => 9 x + 6 y  =  45

                          8 x - 6 y  =  6

                          9 x + 6 y  =  45

                       --------------------

                          17x  =  51 

                          x  =  51/17

                          x  =  3

By applying x = 3 in (1), we get

8(3) - 6y  =  6

24 - 6y  =  6

-6y  =  6 - 24

-6 y  =  -18

y  =  3

So the point of intersection of the straight lines is (3, 3).

Example 2 :

Find the intersection point of the straight lines

3x + 2y  =  11 and 7x - 3y  =  41

Solution :

3x + 2y  =  11 ----- (1)

7x - 3y  =  41  ------(2) 

(1)  3 =>  9x + 6y  =  33

(2)  2 =>  14 x - 6 y  =  82

9x + 6y  =  33

14x - 6y  =  82

--------------------

23x  =  115 

x  =  115/23

x  =  5

By applying x = 5 in (1), we get

3(5) + 2y  =  11

15 + 2y  =  11

y  =  11 - 15

2y  =  -4

y  =  -2

So the point of intersection of the given straight lines is (5, -2).

Example 3 :

Find the intersection point of the straight lines

5x + 3y  =  11 and 3x + 5y  =  -3

Solution :

5x + 3y  =  11  ----- (1)

3x + 5y  =  -3 ------(2) 

(1)  5 => 25 x + 15 y = 55

(2)  3 => 9 x + 15 y = -9

25 x + 15 y = 55

9 x + 15 y = -9

(-)     (-)    (+)

--------------------

16x  =  64 

x  =  4

By applying x = 4 in (1), we get

5(4) + 3y  =  11

20 + 3y  =  11

3y  =  11 - 20

3y  =  -9

y = -3

So the intersection point of the straight lines is (4,-3).

Example 4 :

Find the intersection point of the straight lines

2x - y  =  15 and 5x + 3y  =  21

Solution :

2x - y  =  15   ----- (1)

5x + 3y  =  21 ------(2) 

(1)  3 => 6x - 3y  =  45

6x - 3y  =  45

5x + 3y  =  21

--------------------

11x  =  66 

x  =  6

By applying x = 6 in (1), we get

2(6) - y  =  15

12 -  y  =  15

y  =  -3

So the point of intersection of the given straight lines is (6, -3).

After having gone through the stuff given above, we hope that the students would have understood how to find the point of intersection of two lines.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com





Recent Articles

  1. Problems on Trigonometric Identities with Solutions

    Mar 03, 24 08:27 PM

    Problems on Trigonometric Identities with Solutions

    Read More

  2. Solved Problems on Binomial Expansion

    Mar 03, 24 10:46 AM

    Solved Problems on Binomial Expansion

    Read More

  3. P-Series Test for Convergence and Divergence

    Mar 03, 24 06:28 AM

    P-Series Test for Convergence and Divergence

    Read More