EXAMPLES OF FINDING THE POINT OF INTERSECTION OF TWO LINES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If two straight lines are not parallel then they will meet at a point.This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Example 1 :

Find the intersection point of the straight lines

4x - 3y  =  3 and 3x + 2y  =  15

Solution :

4x - 3y  =  3   ----- (1)

3x + 2y  =  15 ------(2) 

(1)  2 =>  8x - 6y  =  6

(2)  3 => 9 x + 6 y  =  45

                          8 x - 6 y  =  6

                          9 x + 6 y  =  45

                       --------------------

                          17x  =  51 

                          x  =  51/17

                          x  =  3

By applying x = 3 in (1), we get

8(3) - 6y  =  6

24 - 6y  =  6

-6y  =  6 - 24

-6 y  =  -18

y  =  3

So the point of intersection of the straight lines is (3, 3).

Example 2 :

Find the intersection point of the straight lines

3x + 2y  =  11 and 7x - 3y  =  41

Solution :

3x + 2y  =  11 ----- (1)

7x - 3y  =  41  ------(2) 

(1)  3 =>  9x + 6y  =  33

(2)  2 =>  14 x - 6 y  =  82

9x + 6y  =  33

14x - 6y  =  82

--------------------

23x  =  115 

x  =  115/23

x  =  5

By applying x = 5 in (1), we get

3(5) + 2y  =  11

15 + 2y  =  11

y  =  11 - 15

2y  =  -4

y  =  -2

So the point of intersection of the given straight lines is (5, -2).

Example 3 :

Find the intersection point of the straight lines

5x + 3y  =  11 and 3x + 5y  =  -3

Solution :

5x + 3y  =  11  ----- (1)

3x + 5y  =  -3 ------(2) 

(1)  5 => 25 x + 15 y = 55

(2)  3 => 9 x + 15 y = -9

25 x + 15 y = 55

9 x + 15 y = -9

(-)     (-)    (+)

--------------------

16x  =  64 

x  =  4

By applying x = 4 in (1), we get

5(4) + 3y  =  11

20 + 3y  =  11

3y  =  11 - 20

3y  =  -9

y = -3

So the intersection point of the straight lines is (4,-3).

Example 4 :

Find the intersection point of the straight lines

2x - y  =  15 and 5x + 3y  =  21

Solution :

2x - y  =  15   ----- (1)

5x + 3y  =  21 ------(2) 

(1)  3 => 6x - 3y  =  45

6x - 3y  =  45

5x + 3y  =  21

--------------------

11x  =  66 

x  =  6

By applying x = 6 in (1), we get

2(6) - y  =  15

12 -  y  =  15

y  =  -3

So the point of intersection of the given straight lines is (6, -3).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  2. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More

  3. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More