# EVEN AND ODD FUNCTIONS WORKSHEET

Problem 1-12 : Determine if f(x) is even or odd function.

Problem 1 :

f(x) = 2x3

Problem 2 :

f(x) = 3x2 - 5

Problem 3 :

f(x) = x3 + 5x

Problem 4 :

f(x) = 2x3 + 3x- 1

Problem 5 :

f(x) = x4 - 2x2 + 7

Problem 6 :

f(x) = sinx

Problem 7 :

f(x) = cscx

Problem 8 :

f(x) = secx

Problem 9 :

f(x) = cosx

Problem 10 :

f(x) = tanx

Problem 11 :

f(x) = sinx + tanx

Problem 12 :

f(x) = secx + cosx

Problem 13 :

f(x) = sinx - cscx

Problem 14 :

f(x) = sinx - cscx

Problem 15 :

Let the point (5, -2) is on the graph of y = f(x).

Name another point on the graph if

(a) f(x) is an even function

(b) f(x) is an odd function

f(x) = 2x3

f(-x) = 2(-x)3

f(-x) = 2(-x3)

f(-x) = -2x3

f(-x) = -f(x)

f(x) is an odd function

f(x) = 3x2 - 5

f(-x) = 3(-x)2 - 5

f(-x) = 3x2 - 5

f(-x) = f(x)

f(x) is an even function

f(x) = x3 + 5x

f(-x) = (-x)3 + 5(-x)

f(-x) = -x3 - 5x

f(-x) = -(x3 + 5x)

f(-x) = -f(x)

f(x) is an odd function

f(x) = 2x3 + 3x- 1

f(-x) = 2(-x)3 + 3(-x)- 1

f(-x) = 2(-x3) + 3x- 1

f(-x) = -2x3 + 3x- 1

f(-x) ≠ f(x) or -f(x)

f(x) is neither even or odd

f(x) = x4 - 2x2 + 7

f(-x) = (-x)4 - 2(-x)2 + 7

f(-x) = x4 - 2x2 + 7

f(-x) = f(x)

f(x) is an even function

f(x) = sinx

f(-x) = sin(-x)

Here, the angle is negative (-x). So, it falls in the IVth quadrant. Since sine is negative in the IVth quadrant,

f(-x) = -sinx

f(-x) = -f(x)

f(x) is an odd function

f(x) = cscx

f(-x) = csc(-x)

Since cosecant is negative in the IVth quadrant,

f(-x) = -cscx

f(-x) = -f(x)

f(x) is an odd function

f(x) = secx

f(-x) = sec(-x)

Since secant is positive in the IVth quadrant,

f(-x) = secx

f(-x) = f(x)

f(x) is an even function

f(x) = cosx

f(-x) = cos(-x)

Since cosine is positive in the IVth quadrant,

f(-x) = cosx

f(-x) = f(x)

f(x) is an even function

f(x) = tanx

f(-x) = tan(-x)

Since tangent is negative in the IVth quadrant,

f(-x) = -tanx

f(-x) = f(x)

f(x) is an odd function

f(x) = sinx + tanx

f(-x) = sin(-x) + tan(-x)

f(-x) = -sinx - tanx

f(-x) = -(sinx + tanx)

f(-x) = -f(x)

f(x) is an odd function

f(x) = secx + cosx

f(-x) = sec(-x) + cos(-x)

f(-x) = secx + cosx

f(-x) = f(x)

f(x) is an even function

f(x) = sinx - cscx

f(-x) = sin(-x) - csc(-x)

f(-x) = -sinx - (-cscx)

f(-x) = -sinx + cscx

f(-x) = -(sinx - cscx)

f(-x) = -f(x)

f(x) is an odd function

f(x) = cosx - secx

f(-x) = cos(-x) - sec(-x)

f(-x) = cosx - secx

f(-x) = f(x)

f(x) is an even function

f(x) = cosx - secx

f(-x) = cos(-x) - sec(-x)

f(-x) = cosx - secx

f(-x) = f(x)

f(x) is an even function

Given : The point (5, -2) is on the graph of y = f(x),

x = 5, y = -2

When x = 5, the value of f(x) is -2.

f(5) = -2 ----(1)

Part (a) :

Given : f(x) is an even function.

f(-x) = f(x)

f(-5) = f(5)

f(-5) = -2 ........from (1)

Another point on the graph is (-5, -2).

Part (b) :

Given : f(x) is an odd function.

f(-x) = -f(x)

f(-5) = -f(5)

f(-5) = -(-2) ........from (1)

f(-5) = 2

Another point on the graph is (-5, 2).

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### Problems on Trigonometric Identities with Solutions

Mar 03, 24 08:27 PM

Problems on Trigonometric Identities with Solutions

2. ### Solved Problems on Binomial Expansion

Mar 03, 24 10:46 AM

Solved Problems on Binomial Expansion