# EVALUATING TRIGONOMETRIC FUNCTIONS OF SPECIAL ANGLES

## About "Evaluating trigonometric functions of special angles"

Evaluating trigonometric functions of special angles :

Here we are going to see how to evaluate trigonometric functions of special angles.

To evaluate the given trigonometric expressions, we use the table given below.

 θ 0° 30° 45° 60° 90° sin θ 0 1/2 1/√2 √3/2 1 cos θ 1 √3/2 1/√2 1/2 0 tan θ 0 1/√3 1 √3 ∞

## Evaluating trigonometric functions of special angles - Examples

Let us look into some examples given below.

Example 1 :

Evaluate sin 45° + cos 45°

Solution :

sin 45°  =  1/√2

cos 45°  =  1/√2

sin 45° + cos 45°  =  (1/√2)  +  (1/√2)

=  (1 + 1)/√2

=  2/√2

=  (√2 ⋅ √2) / √2

=  √2

Example 2 :

Evaluate sin 60° tan 30°

Solution :

sin 60°  =  √3/2

tan 30°  =  1/√3

sin 60° cos 30°  =  (√3/2)  (1/√3)

=  1/2

Example 3 :

Evaluate tan 45°/(tan 30° + tan 60°)

Solution :

tan 45°  =  1

tan 30°  =  1/2

tan 60°  =  √3

tan 45°/(tan 30° + tan 60°)  =  1/[(1/√3) + √3]

=  1/[(1 + 3)/√3]

=  √3/4

Example 4 :

Evaluate tan2 60° - 2tan2 45° - cot2 30° + 2sin2 30

Solution :

tan60°  =  (tan 60°)2   =  (√3) =  3

tan45°  =  (tan 45°)2   =  (1) =  1

cot30°  =  (cot 30°)2   =  (√3) =  3

sin30°  =  (sin 30°)2   =  (1/2) =  1/4

=  3 - 2 (1) - 3 + 2(1/4)

=  -2 + 1/2

=  (-4 + 1)/2  =  -3/2

Example 5 :

Evaluate 4 (sin30° + cos460°) - 3 (cos245° - sin290°)

Solution :

sin30°  =  (sin 30°)4   =  (1/2) =  1/16

cos4 60°  =  (cos 60°)4   =  (1/2) =  1/16

cos45°  =  (cos 45°)2   =  (1/2) =  1/2

sin90°  =  (sin 90°)2   =  (1) =  1

=  4 [(1/16) + (1/16)] - 3[(1/2) - 1]

=  4(2/16)  -  3 (-1/2)

=  (1/2) + (3/2)

=  (1 + 3)/2  =  4/2  = 2

Example 6 :

Evaluate 6 cos290° + 3 sin290° + 4 tan245°

Solution :

cos290°  =  (cos 90°)=  (0)2  =  0

sin290°  =  (sin 90°)2  =  (1)2  =  1

tan245°  =  (tan 45°)2  =  (1)2  =  1

6 cos290° + 3 sin290° + 4 tan245°  =  6(0) + 3(1) + 4(1)

=  0 + 3 + 4

=   7

Example 7 :

Evaluate 4 cot245  - sec260 + sin260 + cos260

Solution :

cot245°  =  (cot 45°)2  =  (1)2  =  1

sec260  =  (sec 60°)2  =  (2)2  =  4

sin260  =  (sin 60°)2  =  (√3/2)2  =  3/4

cos260  =  (cos 60°)2  =  (1/2)2  =  1/4

=  4(1) - 4 + (3/4) + (1/4)

=  4 - 4 + (3+1)/4

=  4/4  =  1

Example 8 :

Evaluate sin 30°cos 60° + cos 30° sin 60°

Solution :

sin 30°  =  1/2

cos 60°  =  1/2

cos 30°  =  √3/2

sin 60°  =  √3/2

=  (1/2) (1/2) + (√3/2)(√3/2)

=  (1/4) + (3/4)

=  (1 + 3)/4

=  4/4

=  1 After having gone through the stuff given above, we hope that the students would have understood "Evaluating trigonometric functions of special angles".

Apart from the stuff given above, if you want to know more about "Evaluating trigonometric functions of special angles"

Apart from the stuff given on this web page, if you need any other stuff in math, please use our google custom search here.