To evaluate the given trigonometric functions of special angles, we use the table given below.
θ |
0° |
30° |
45° |
60° |
90° |
sin θ |
0 |
1/2 |
1/√2 |
√3/2 |
1 |
cos θ |
1 |
√3/2 |
1/√2 |
1/2 |
0 |
tan θ |
0 |
1/√3 |
1 |
√3 |
∞ |
Example 1 :
Evaluate :
sin45° + cos45°
Solution :
sin45° = 1/√2
cos45° = 1/√2
sin45° + cos45° = 1/√2 + 1/√2
= (1 + 1)/√2
= 2/√2
= (√2 ⋅ √2) / √2
= √2
Example 2 :
Evaluate :
sin60° tan30°
Solution :
sin60° = √3/2
tan30° = 1/√3
sin60°cos30° = (√3/2) ⋅ (1/√3)
= 1/2
Example 3 :
Evaluate :
tan45°/(tan30° + tan60°)
Solution :
tan45° = 1
tan30° = 1/2
tan60° = √3
tan45°/(tan30° + tan60°) = 1/[(1/√3) + √3]
= 1/[(1 + 3)/√3]
= √3/4
Example 4 :
Evaluate :
tan260° - 2tan245° - cot230° + 2sin230
Solution :
tan260° = (tan60°)2 = (√3)2 = 3
tan245° = (tan45°)2 = (1)2 = 1
cot230° = (cot30°)2 = (√3)2 = 3
sin230° = (sin30°)2 = (1/2)2 = 1/4
= 3 - 2 (1) - 3 + 2(1/4)
= -2 + 1/2
= (-4 + 1)/2 =
-3/2
Example 5 :
Evaluate :
4(sin430° + cos460°) - 3(cos245° - sin290°)
Solution :
sin430° = (sin30°)4 = (1/2)4 = 1/16
cos460° = (cos60°)4 = (1/2)4 = 1/16
cos245° = (cos45°)2 = (1/√2)2 = 1/2
sin290° = (sin90°)2 = (1)2 = 1
= 4 [(1/16) + (1/16)] - 3[(1/2) - 1]
= 4(2/16) - 3 (-1/2)
= (1/2) + (3/2)
= (1 + 3)/2
= 4/2
= 2
Example 6 :
Evaluate :
6cos290° + 3sin290° + 4tan245°
Solution :
cos290° = (cos90°)2 = (0)2 = 0
sin290° = (sin90°)2 = (1)2 = 1
tan245° = (tan45°)2 = (1)2 = 1
6cos290° + 3sin290° + 4tan245° = 6(0) + 3(1) + 4(1)
= 0 + 3 + 4
= 7
Example 7 :
Evaluate :
4cot245 - sec260 + sin260 + cos260
Solution :
cot245° = (cot 45°)2 = (1)2 = 1
sec260 = (sec 60°)2 = (2)2 = 4
sin260 = (sin 60°)2 = (√3/2)2 = 3/4
cos260 = (cos 60°)2 = (1/2)2 = 1/4
= 4(1) - 4 + (3/4) + (1/4)
= 4 - 4 + (3+1)/4
= 4/4
= 1
Example 8 :
Evaluate :
sin 30°cos60° + cos30°sin60°
Solution :
sin30° = 1/2
cos60° = 1/2
cos30° = √3/2
sin60° = √3/2
sin30°cos60° + cos30°sin60° :
= (1/2)(1/2) + (√3/2)(√3/2)
= (1/4) + (3/4)
= (1 + 3)/4
= 4/4
= 1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 22, 25 09:59 AM
May 21, 25 01:19 PM
May 21, 25 05:33 AM