EVALUATING NUMERICAL EXPRESSIONS

PEMDAS rule can be used to simplify or evaluate complicated numerical expressions with more than one binary operation easily.

Very simply way to remember  PEMDAS rule :

----> Parentheses (or Brackets)

E ----> Exponents 

M ----> Multiplication

----> Division

A ----> Addition

S ----> Subtraction

Important Notes :

1. In a particular simplification, if you have both  multiplication and division, do the operations one by one in the order from left to right.

2. Multiplication does not always come before division. We have to do one by one in the order from left to right.

Examples :

16 ÷ 4 x 3 = 4 x 3 = 12

In the above simplification, we have both division and multiplication.

From left to right, we have division first and multiplication next.

So we do division first and multiplication next.

Problem 1 :

Evaluate the following numerical expression.

29 - 5 x 3

Solution :

Expression

29 - 5 x 3



Evaluation

=  29 - 5 x 3

=  29 - 15

=  14

Operation

Multiplication

Subtraction

Result

Problem 2 :

Evaluate the following numerical expression.

(14 + 12) x 3

Solution :

Expression

(14 + 12) x 3

Evaluation

(14 + 12) x 3

=  26 x 3

=  78

Operation

Parentheses

Multiplication

Result

Problem 3 :

Evaluate the following numerical expression.

92 - 15 ÷ 3

Solution :

Expression

92 - 15 ÷ 3

Evaluation

=  92 - 15 ÷ 3

81 - 15 ÷ 3

=  81 - 5

=  76

Operation

Power

Division

Subtraction

Result

Problem 4 :

Evaluate the following numerical expression.

5 + 5 x (5 + 7) ÷ 4 - 6

Solution :

Expression

5 + 5 x (5+7) ÷ 4 -6

Evaluation

=  5 + 5 x (5+7) ÷ 4 -6

=  5 + 5 x 12 ÷ 4 -6

=  5 + 60 ÷ 4 -6

=   5 + 15 -6

=   20 - 6

=   14

Operation

Parentheses

Multiplication

Division

Addition

Subtraction

Result

Problem 5 :

Evaluate the following numerical expression.

-2(12 ÷ 4 x 3) + 10

Solution :

Expression

-2(12 ÷ 4 x 3) + 10

Evaluation

=  -2(12 ÷ 4 x 3) + 10

=  -2(12 ÷ 4 x 3) + 10

=  -2(3 x 3) + 10

=  -2(9) + 10

= -18 + 10

= -8

Operation

Parentheses

Division

Multiplication

Multiplication

Subtraction

Result

Problem 6 :

Evaluate the following numerical expression.

6 + [(16 - 4) ÷ (22 + 2)] - 2

Solution :

Expression

6+[(16-4)÷(2²+2)]-2

Evaluation

= 6+[(16-4)÷(22+2)]-2

= 6+[12÷(22+2)]-2

= 6+[12÷(4+2)]-2

= 6+[12÷6]-2

6+2 - 2

= 8 - 2

6

Operation

Parentheses

Power

Parentheses

Parenthesis

Addition

Subtraction

Result

Problem 7 :

Evaluate the following numerical expression.

(96 ÷ 12) + 14 x (12 + 8) ÷ 2

Solution :

Expression

(96÷12)+14x(12+8) ÷ 2

Evaluation

=(96÷12)+14x(12+8) ÷ 2

= 8 + 14x20 ÷ 2

= 8 + 280 ÷ 2

= 8 + 140

148

Operation

Parentheses

Multiplication

Division

Addition

Result

Problem 8 :

Evaluate the following numerical expression.

(93 + 15) ÷ (3 x 4) - 24 + 8

Solution :

Expression

(93+15)÷(3x4)-24+8

Evaluation

(93+15)÷(3x4)-24+8

108 ÷ 12 - 24 + 8

=  9 - 24 + 8

-15 + 8

=  -7

Operation

Parentheses

Division

Subtraction

Subtraction

Result

Problem 9 :

Evaluate the following numerical expression.

55 ÷ 11 + (18 - 6) x 9

Solution :

Expression

55÷11+(18-6)x9

Evaluation

= 55÷11+(18-6)x9

55÷11 + 12x9

= 5 + 12x9

5 + 108

113

Operation

Parentheses

Division

Multiplication

Addition

Result

Problem 10 :

Evaluate the following numerical expression.

(7 + 18) x 3 ÷ (2 + 13) - 28

Solution :

Expression

(7+18)x3÷(2+13)- 28

Evaluation

= (7+18)x3÷(2+13)-28

= 25 x 3 ÷ 15 - 28

= 75 ÷ 15 - 28

= 5 - 28

= -23

Operation

Parentheses

Multiplication

Division

Subtraction

Result

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Descriptive Form of Set

    Oct 03, 23 12:56 AM

    Descriptive Form of Set - Concept - Examples

    Read More

  2. Descriptive Form of Set Worksheet

    Oct 03, 23 12:34 AM

    tutoring.png
    Descriptive Form of Set Worksheet

    Read More

  3. Representation of a Set Worksheet

    Oct 02, 23 11:40 PM

    tutoring.png
    Representation of a Set Worksheet

    Read More