EVALUATING NUMERIC EXPRESSIONS INVOLVING RATIONAL EXPONENTS

To evaluate numeric numeric values with rational exponents, we follow the steps given below.

Step 1 :

Express the base in exponential form.

Step 2 :

If we have power raised to another power, we will multiply the powers.

Step 3 :

Do possible simplification.

Evaluate the following :

Example 1 :

811/2

Solution :

= 811/2

Base = 81 and exponent = 1/2

81 = 92

811/2 = (92)1/2

= 9(2 x 1/2)

811/2 = 9

Example 2 :

163/2

Solution :

= 163/2

Base = 16, exponent = 3/2

16 = 42

= 4(2 x 3/2)

= 43

163/2 = 64

Example 3 :

100003/4

Solution :

= 100003/4

Base = 10000 and exponent = 3/4

10000 = 104

= 10(4 x 3/4)

= 103

= 1000

Example 4 :

642/3

Solution :

= 642/3

Base = 64 and exponent = 2/3

64 = 43

= 4(3 x 2/3)

= 42

= 16

Example 5 :

272/3

Solution :

= 272/3

Base = 27 and exponent = 2/3

27 = 33

= 3(3 x 2/3)

= 32

= 9

Example 6 :

81-3/2

Solution :

81-3/2

Base = 81 and exponent = -3/2

81 = 92

= 9 2 x (-3/2)

= 9-3

= 1/93

= 1/729

Example 7 :

If c2/5 = 4, then c = ?

Solution :

c2/5 = 4

Raising power 5 on both sides.

(c2/5)5 = 45

c(2/5) x 5 = 45

c= 45

Take square roots on both sides.

c = 45

c = 4x44

c = 16√(2x2)

c = 16(2)

c = 32

Example 8 :

274/x = 81, x = ?

Solution :

274/x = 81

Try to express the bases 27 and 81 as a multiple of 3.

33 = 27 and 34 = 81

33(4/x) = 34

312/x = 34

Since the bases are equal, we can equate the powers.

12/x = 4

Take reciprocal on both sides.

x/12 = 1/4

Multiply 12 on both sides.

x = 12/4

x = 3

Example 9 :

201/2 ⋅ 201/2

Solution :

201/2 ⋅ 201/2

Using the property a⋅ an = am+n

= 201/2 ⋅ 201/2

= 20(1/2 + 1/2)

= 20

Example 10 :

51/3 ⋅ 251/3

Solution :

= 51/3 ⋅ 251/3

25 = 52

= 51/3 ⋅ (52)1/3

= 51/3 ⋅ 52/3

= 5(1+2)/3

= 53/3

= 5

Example 11 :

Evaluate 3 x (16)3/4

Solution :

= 3 x (16)3/4

16 = 24

= 3 x (24)3/4

= 3 x 24x(3/4)

= 3 x 23

= 3 x 8

= 24

So, 24 is the answer.

Example 12 :

Evaluate 2 x (27)-2/3

Solution :

= 2 x (27)-2/3

27 = 33

2 x (33)-2/3

= 2 x 33 x (-2/3)

= 2 x 3-2

= 2 x (1/32)

= 2 x (1/9)

= 2/9

So, the answer is 2/9.

Example 13 :

Simplify

[(64)-1/6x(216)-1/3x(81)1/4]/[(512)-1/3x(16)1/4x(9)-1/2] 

Solution :

= [(64)-1/6x(216)-1/3x(81)1/4]/[(512)-1/3x(16)1/4x(9)-1/2]

Writting numbers in exponential form,

64 = 26

216 = 63

81 = 34

512 = 83

16 = 24

9 = 32

=[(64)-1/6x(216)-1/3x(81)1/4]/[(512)-1/3x(16)1/4x(9)-1/2

(64)-1/6 = (26)-1/6

= 2-1

= 1/2

(216)-1/3 (63)-1/3

= 6-1

= 1/6

(81)1/4 = (34)1/4

= 31

= 3

(512)-1/3 (83)-1/3

= 8-1

= 1/8

(16)1/4(24)1/4

= 21

= 2

(9)-1/2 (32)-1/2

= 3-1

= 1/3

= (1/2) (1/6) 3 / (1/8) 2 (1/3)

= (3/12) / (2/24)

= (1/4) / (1/12)

= (1/4) x (12/1)

= 3

So, the answer is 3.

Example 14 :

Evalaute (0.000064)5/6 

Solution :

= (0.000064)5/6 

First we have to convert decimal as fraction, for that we observe the number of digits after the decimal. Since we have 6 digits after the decimal, we have to multiply the numerator and denominator by 1000000.

= [0.000064 x (1000000/1000000)]5/6 

= [(64/1000000)]5/6 

64 = 26

= [26/106]5/6 

= [(2/10)6]5/6 

(2/10)5

= 32/100000

= 0.00032

Example 15 :

Value of (271/3 + 641/3)is

a)  71/3      b)  49     c)  71/2      d)  1/7

Solution :

= (271/3 + 641/3)

Writing 27 and 64 in exponential form, we get

27 = 33

271/3 = (33)1/3

= 33 x (1/3)

= 3

64 = 43

641/3 = (43)1/3

= 43 x (1/3)

= 4

(271/3 + 641/3)2 = (3 + 4)2

= 72

= 49

So, option b is correct.

Example 16 :

Value of ((625)-1/2)is

a)  1/625      b)  -25     c)  -625      d)  25

Solution :

= ((625)-1/2)2

625 = 25 x 25

= 252

((625)-1/2)2 = ((252)-1/2)2

= 25-2

= 1/252

= 1/625

So, option a is correct.

Solve the given exponential equations.

Example 17 :

Value of (√6)x - 2 = 1

Solution :

(√6)x - 2 = 1

Anything to the power 0 is 1.

(√6)x - 2 = 60

Writing square root sign in exponential form, we get

(6)(x - 2)/2 = 60

Since the bases are equal, we can equate the powers.

(x - 2)/2 = 0

x - 2 = 0

x = 2

So, the value of x is 2.

Example 18 :

Value of 4 x (81)-1/2 [811/2 + 813/2]

Solution :

= 4 x (81)-1/2 [811/2 + 813/2]

81 = 92

= 4 x (92)-1/2 [(92)1/2 + (92)3/2]

= 4 x (9-1) [92x(1/2) + 92 x (3/2)]

= 4 x (1/9) [9 + 93]

= (4/9) [9 + 729]

= (4/9)(738)

= 4(82)

= 328

Example 19 :

Value of (64)1/2 [641/2 + 1]

Solution :

= (64)1/2 [641/2 + 1]

64 = 82

= (82)1/2 [(82)1/2 + 1]

= 82 x (1/2) [82 x (1/2) + 1]

= 8 [8 + 1]

= 8 (9)

= 72

Example 20 :

Value of [(36)7/2 - (36)9/2] / (36)5/2

Solution :

= [(36)7/2 - (36)9/2] / (36)5/2

36 = 62

= [(62)7/2 - (62)9/2] / (62)5/2

= [6- 69] / 65

= [6(62 - 64)] / 65

= (62 - 64)

= 36 - 1296

= 1260

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More