EVALUATING LIMITS WITH SQUARE ROOTS

About "Evaluating Limits With Square Roots"

Evaluating Limits With Square Roots :

Here we are going to see some practice problems on evaluating limits with solutions.

Evaluating Limits With Square Roots - Questions 

Question 1 :

Evaluate 

lim x->2 (1/x) - (1/2) / (x - 2)

Solution :

lim x->2 (1/x) - (1/2) / (x - 2)

  =  lim x->2 (2 - x)/2x(x - 2)

  =  lim x->2 -(x - 2)/2x(x - 2)

  =  lim x->2 -(1/2x)

By applying the value of x, we get

  =  -(1/2(2))

  =   -1/4

Hence the value of lim x->2 (1/x) - (1/2) / (x - 2) is -1/4.

Question 2 :

Evaluate 

lim x->1 (√x - x2) / (1 - √x)

Solution :

lim x->1 (√x - x2) / (1 - √x)

=  lim x->1 (√x - (x)4) / (1 - √x)

=  lim x->1 √x (1 - (√x)3) / (1 - √x)

=  lim x->1 √x (13 - (√x)3) / (1 - √x)

 =  lim x->1 √x  ⋅ lim x->1 (13 - (√x)3) / (1 - √x)

 =  lim x->1 √x  ⋅ lim x->1 ((√x)3 - 13) / (√x - 1)

 =  lim x->1 √x  ⋅ lim x->1 ((√x)- 13) / (x1/2 - 1)

 =  lim x->1 √x⋅ [lim x->1 ((x)3/2 - 13/2)]/[lim x->1(x1/2 - 11/2)]

 =  lim x->1 √x (3/2) / (1/2)

 =  1 ⋅ (3/2) ⋅ (1/2)

  =  3

Hence the value of lim x->1 (√x - x2) / (1 - √x) is 3.

Question 3 :

Evaluate 

lim x->0 (√(x2 + 1) - 1) / (√(x2 + 16) - 4) 

Solution :

lim x->0 (√(x2 + 1) - 1) / (√(x2 + 16) - 4) 

  =  [lim x->0 (√(x2 + 1) - 1)] / [lim x-> 0 (√(x2 + 16) - 4)]

By applying the limit values, we get

  =  (√16 + 4)/(√1 + 1)

  =  (4 + 4)/(1 + 1)

  =  8/2

  =  4

Hence the value of lim x->0 (√(x2 + 1) - 1) / (√(x2 + 16) - 4) is 4.

Question 4 :

lim x->0 (√(1 + x) - 1)/x

Solution :

lim x->0 (√(1 + x) - 1)/x

  =  lim x->0 [(√(1 + x) - 1)/x]⋅ [(√(1 + x) + 1)/(√(1 + x) + 1)]

  =  lim x->0 [(√(1 + x) - 1)/x]⋅ [(√(1 + x) + 1)/(√(1 + x) + 1)]

  =  lim x->0 [(√(1 + x)2 - 12)/x(√(1 + x) + 1)]

  =  lim x->0 [ x2/x(√(1 + x) + 1)]

  =  lim x->0 [ x/(√(1 + x) + 1)]

By applying the limit value, we get 

  =  0/√1 + 1

  =  0

Hence the value lim x->0 (√(1 + x) - 1)/x is 0.

Question 5 :

lim x->1 ((7 + x3) - (3 + x2))/(x - 1)

Solution :

lim x->1 ((7 + x3) - (3 + x2))/(x - 1)

  =  lim x->1 ((7 + x3) - (3 + x2))/(x - 1)

  =  lim x->1 ((7 + x3) - 2 + 2 - (3 + x2))/(x - 1)

  =  lim x->1 [(7+x3)-2)/(x-1)]-lim x->1[(√(3+x2)-2)/(x-1)]

  =  lim x->1(x3-1)(1/3)8(-2/3)/(x-1) - lim x->1(x2-1)/(x-1)(1/2) 4(-1/2)

  =  lim x->1(x2 + x + 1)(1/3)(1/4) - lim x->1(x+1)(1/2) (1/2)

=  1/4 - 1/2

=  - 1/4

Hence the value of lim x->1 ((7 + x3) - (3 + x2))/(x - 1) is 1/4.

After having gone through the stuff given above, we hope that the students would have understood, "Evaluating Limits With Square Roots"

Apart from the stuff given in "Evaluating Limits With Square Roots" if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Adaptive Learning Platforms

    May 26, 23 12:27 PM

    adaptivelearning1
    Adaptive Learning Platforms: Personalized Mathematics Instruction with Technology

    Read More

  2. Simplifying Expressions with Rational Exponents Worksheet

    May 21, 23 07:40 PM

    tutoring.png
    Simplifying Expressions with Rational Exponents Worksheet

    Read More

  3. Simplifying Rational Expressions Worksheet

    May 20, 23 10:53 PM

    tutoring.png
    Simplifying Rational Expressions Worksheet

    Read More