# EVALUATING EXPRESSIONS WITH EXPONENTS WORKSHEET

Evaluating Expressions with Exponents Worksheet :

Worksheet given in this section will be much useful for the students who would like to practice problems on evaluating expressions with exponents.

To evaluate expression with exponents, we need to be aware of laws of exponents.

To know more about laws of exponents,

## Evaluating Expressions with Exponents Worksheet - Problems

Problem 1 :

Evaluate :

(-1)4

Problem 2 :

Evaluate :

(-1)5

Problem 3 :

Evaluate :

-(-3)3

Problem 4 :

Evaluate :

50

Problem 5 :

Evaluate :

-30

Problem 6 :

Evaluate :

(-7)0

Problem 7 :

Evaluate :

5-3

Problem 8 :

Evaluate :

23 ⋅ 3⋅ (-1)5

Problem 9 :

Evaluate :

(-1)4 ⋅ 3⋅ 22

Problem 10 :

If x2y3  =  10 and x3y2  =  8, then find the value of x5y5. ## Evaluating Expressions with Exponents Worksheet - Solutions

Problem 1 :

Evaluate :

(-1)4

Solution :

Order of operations (PEMDAS) dictates that parentheses take precedence.

Here, the exponent 4 is an even number. So, the negative sign inside the parentheses will become positive.

When 1 is multiplied by itself any number of times, the result will be 1.

More clearly,

(-1)=  (-1) ⋅ (-1) (-1) ⋅ (-1)

(-1)4  =  1

So, the value of (-1)4 is 1.

Problem 2 :

Evaluate :

(-1)5

Solution :

Order of operations (PEMDAS) dictates that parentheses take precedence.

Here, the exponent 5 is an odd number. So, the negative sign inside the parentheses will remain same.

When 1 is multiplied by itself any number of times, the result will be 1.

More clearly,

(-1)5  =  (-1) ⋅ (-1) ⋅ (-1) ⋅ (-1) ⋅ (-1)

(-1)4  =  -1

So, the value of (-1)5 is -1.

Problem 3 :

Evaluate :

-(-3)3

Solution :

Order of operations (PEMDAS) dictates that parentheses take precedence.

So, we have

-[(-3)3]  =  -[(-3) ⋅ (-3) ⋅ (-3)]

-[(-3)3]  =  -[-27]

-[(-3)3]  =  27

So, the value of (-3)3 is 27.

Problem 4 :

Evaluate :

50

Solution :

Anything to the power zero is equal to 1.

So, we have

50  =  1

So, the value of 50 is 1.

Problem 5 :

Evaluate :

-30

Solution :

Anything to the power zero is equal to 1.

So, we have

-30  =  -1

So, the value of -3is -1.

Problem 6 :

Evaluate :

(-7)0

Solution :

Order of operations (PEMDAS) dictates that parentheses take precedence.

Anything to the power zero is equal to 1.

So, we have

(-7)0  =  1

So, the value of (-7)is -1.

Problem 7 :

Evaluate :

5-3

Solution :

Using laws of exponents, we have

5-3  =  1 / 53

5-3  =  1 / 125

So, the value of 5-3 is 1/125.

Problem 8 :

Evaluate :

23 ⋅ 3⋅ (-1)5

Solution :

In the above expression, first evaluate each term separately.

23  =  2 ⋅ 2 ⋅ 2  =  8

32  =  3 ⋅ 3  =  9

(-1)5  =  (-1) ⋅ (-1) ⋅ (-1) ⋅ (-1) ⋅ (-1)  =  -1

Now, we have

23 ⋅ 3⋅ (-1)5  =  8 ⋅ 9 ⋅ (-1)

23 ⋅ 3⋅ (-1)5  =  - 72

So, the value 23 ⋅ 3⋅ (-1)5 is -72.

Problem 9 :

Evaluate :

(-1)4 ⋅ 3⋅ 22

Solution :

In the above expression, first evaluate each term separately.

(-1)4  =  (-1) ⋅ (-1) ⋅ (-1) ⋅ (-1)  =  1

33  =  3 ⋅ 3 ⋅ 3  =  27

22  =  2 ⋅ 2  =  4

Now, we have

(-1)4 ⋅ 3⋅ 22  =  1 ⋅ 27 ⋅ 4

(-1)4 ⋅ 3⋅ 22  =  108

So, the value (-1)4 ⋅ 3⋅ 22 is 108.

Problem 10 :

If x2y3  =  10 and x3y2  =  8, then find the value of x5y5.

Solution :

x2y3  =  10 -----(1)

x3y2  =  8 -----(2)

Multiply (1) and (2) :

(1) ⋅ (2) -----> (x2y3) ⋅ (x3y2)  =  10 ⋅ 8

x5y5  =  80

So, the value x5y5 is 80. After having gone through the stuff given above, we hope that the students would have understood, how to evaluating expressions with exponents.

Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 