EVALUATE NUMERICAL EXPRESSIONS INVOLVING WHOLE NUMBERS SHORTCUTS

Using the following algebraic identities, we may easily evaluate numerical expressions involving whole numbers.

(a + b)2  =  a2 + 2ab + b2

(a - b)2  =  a2 - 2ab + b2

a2 - b2  =  (a + b) (a - b)

a3 + b3  =  (a + b) (a2 - ab + b2)

a3 - b3  =  (a - b) (a2 + ab + b2)

Example 1 :

Evaluate

796  796 - 204  204

Solution :

=  796  796 - 204  204

Instead of writing the same numerical values twice, we may write it once and take square for this.

=  7962 - 2042

Now this exactly matches the algebraic identity 

a2 - b2  =  (a + b) (a - b)

  =  (796 + 204) (796 - 204)

  =  1000 (592)

  =  592000

Example 2 :

Evaluate

387  387 + 113  113 + 2  387  113

Solution :

=  387  387 + 113  113 + 2  387  113

=  3872 + 1132 + 2  387  113

It is in the form a2 + b2 + 2ab, so we may write it as (a + b)2

  =  (387 + 113)2

  =  5002

  =  250000

Example 3 :

Evaluate 

87   87 + 61  61 - 2  87  61

Solution :

 =  87  87 + 61  61 - 2  87  61

=  872 + 612 + 2  87  61

It is in the form a2 + b2 - 2ab, so we may write it as (a - b)2

  =  (87 - 61)2

  =  262

  =  (25 + 1)2

=  252 + 12 + 2(25)(1)

=  625 + 1 + 50

=  676

Example 4 :

Evaluate

{(789 ⋅ 789  789 + 211  211  211)} / { (789  789 - 789   211 + 211  211) }

Solution :

Let a  =  789 and b  =  211

Instead of whole numbers given in the question, let us use the variables a and b.

=  (a3 + b3) / (a2 - ab + b2) 

=  (a + b)(a2 - ab + b2) / (a2 - ab + b2) 

=  (a + b)

by applying the values of a and b, we get

   =  789 + 211

  =  1000

Example 5 :

Evaluate

{(489 + 375)2 - (489 - 375)2} / (489 ⋅ 375)

Solution :

Let a  =  489 and b  =  375

=  {(a + b)2 - (a - b)2} / (a ⋅ b)

(a + b)=  (a2 + 2ab + b2)   ---(1)

(a - b)2  =  (a2 - 2ab + b2) ----(2)

(1) - (2)

By simplifying the numerator, we get

(a + b)(a + b)2  =  (a2 + 2ab + b2) -  (a2 - 2ab + b2

=  4ab

By applying the value of (a + b)2  (a + b)2

  =  4ab/ab

  =  4

Hence the answer is 4.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More