Equivalent ratios word problems :
Word problems on equivalent ratios play a major role in quantitative aptitude test. There is no competitive exam without the questions from this topic.
Here, we are going to see some word problems on equivalent ratios.
Problem 1 :
David makes 5 cups of punch by mixing 3 cups of cranberry juice with 2 cups of apple juice. How much cranberry juice and how much apple juice does David need to make four times the original recipe ?
Solution :
Method 1 : Using table
Step 1 :
Make a table comparing the numbers of cups of cranberry juice and apple juice needed to make two times, three times, four times, and five times the original recipe.
In the above table, both terms of the original ratio are multiplied by the same number to find an equivalent ratio.
Step 2 :
The last column of the table shows the numbers of cups of the two juices David needs for four times the original recipe.
David needs 12 cups of cranberry juice and 8 cups of apple juice.
Method 2 : Multiplying both terms of the ratio by the same number.
Step 1 :
Write the original ratio in fraction form.
That is,
3/2
Step 2 :
Multiply the numerator and denominator by the same number. To make four times the original recipe, multiply by 4.
That is,
To make four times the original recipe, David will need 12 cups of cranberry juice and 8 cups of apple juice.
Problem 2 :
Alex makes an alloy by mixing two types of metals, say A and B. To make one unit of alloy, he needs 12 grams of metal A and 17 grams of metal B. If he makes, 5 units of alloy, how many grams of metal A and metal B does he need ?
Solution :
Step 1 :
Alex needs 12 grams of metal A and 17 grams of metal B to make 1 unit of alloy.
From the above information, the ratio between metal A and metal B to make 1 unit of alloy is
12/17
Step 2 :
Since Alex makes 5 units of alloy, we have to multiply the numerator and denominator of the above ratio by 5.
Then we have,
(12/17) x (5/5) = 60/85
To make 5 units of alloy, Alex needs 60 grams of metal A and 85 grams of metal B.
Problem 3 :
Are these ratios equivalent ?
$5 per 3 people
$10 per 6 people
Solution :
From the information we have, we get the following two ratios
5 : 3 and 10 : 6
To check these two ratios are equivalent, we have to apply cross product rule.
That is,
Product of extremes = Product of means ------ (1)
Here,
Extremes = 5 and 6
Means = 3 and 10
Then,
(1) -----> 5 x 6 = 3 x 10 -----> 30 = 30
We get, product of extremes is equal to product of means.
Therefore, the given two ratios are equivalent.
Problem 4 :
You are throwing a party and you need 5 liters of Yoda soda for every 12 guests. If you have 36 guests, how many liters of Yoda soda do you need ?
Solution :
The ratio between number of liters of soda and number of guests.
5/12
If there are 36 guests, we have to make the denominator of the above fraction as 36 using multiplication.
To make 12 as 36, we have to multiply both terms of the ratio by 3.
Then we have,
(5/12) x (3/3) = 15/36
If you have 36 guests, you will need 15 liters of Yoda soda.
After having gone through the stuff given above, we hope that the students would have understood "Equivalent ratios word problems".
Apart from the stuff given above, if you want to know more about "Equivalent ratios word problems", please click here
Apart from "Equivalent ratios word problems", if you need any other stuff in math, please use our google custom search here.
WORD PROBLEMS
HCF and LCM word problems
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits