# EQUATIONS OF LINES ADVANCED QUESTIONS

Here we are going to see an example problem on the topic coordinate geometry.

## Equations of Lines Advanced Questions

Question 1 :

Find the equation of a line passing through the point of intersection of the lines 4x + 7y − 3 = 0 and 2x − 3y  + 1 = 0 that has equal intercepts on the axes.

Solution :

First let us find the point of intersection of the lines 4x + 7y − 3 = 0 and 2x − 3y  + 1 = 0

4x + 7y − 3 = 0 ------(1)

2x − 3y  + 1 = 0 ------(2)

3(1) + 7(2)

12x + 21y − 9 = 0

14x − 21y  + 7 = 0

---------------------

26x - 2  =  0

x = 2/26

x = 1/13

Let us apply the value of x in (1), we get

4(1/13) + 7y - 3  =  0

7y - 3 + (4/13)  =  0

7y  =  3 - (4/13)

7y  =  (39-4)/13

7y  =  35/13

y  =  (35/13 x 7)

y  =  5/13

So, the point of intersection of the given lines is (1/13, 5/13). Since the required line is having equal intercepts, a = b

(x/a) + (y/b)  =  1

The line is passing through the point (1/13, 5/13)

((1/13)/a) + ((5/13)/a)  =  1

(1/13a) + (5/13a)  =  1

6/13a  =  1

13a  =  6

a  =  6/13

Equation of the line :

(x/(6/13)) + (y/(6/13))  =  1

(13x + 13y)/6  =  1

13x + 13y  =  6

13x + 13y - 6  =  0

Question 2 :

A person standing at a junction (crossing) of two straight paths represented by the equations 2x −3y + 4 = 0 and 3x + 4y −5 = 0 seek to reach the path whose equation is 6x −7y + 8 = 0 in the least time. Find the equation of the path that he should follow.

Solution :

The equation of the given lines are

2x −3y + 4 = 0  -----(1)

3x + 4y −5 = 0  -----(2)

6x −7y + 8 = 0   -----(3)

the person is standing at the junction of paths represented by the line (1) and (2)

By solving the (1) and (2), we get

4(1) + 3(2)

8x - 12y + 16  =  0

9x + 12y - 15  =  0

--------------------

17x + 1  =  0

x  =  -1/17

By applying the value of x in (1), we get

2(-1/17) - 3y + 4  =  0

-3y  =  -4 + (2/17)

-3y  =  (-68 + 2)/17

-3y  =  - 66/17

y  =  66/17(3)  =  22/17

Thus the person is standing at the point (-1/17, 22/17)

The person can reach path (3) is the least time if he takes along the perpendicular the line to (3) from the point (-1/17, 22/17)

Slope of the line (3)

m  =  - coefficient of x/coefficient of y

m  =  -6/7

Equation of the line passing through the point (-1/17, 22/17) and having the slope -6/7

Slope of the required line  =  7/6

(y - y1)  =  m(x - x1)

(y - (22/17))  =  (7/6) (x + (1/17))

(17y - 22)/17  =  (7/6)(17x + 1)/17

6(17y - 22)  =  7(17x + 1)

102y - 132  =  119x + 7

119x + 102y + 132 - 7  =  0

119 x + 102y + 125  =  0 After having gone through the stuff given above, we hope that the students would have understood, "Equations of Lines Advanced Questions".

Apart from the stuff given in this section "Equations of Lines Advanced Questions"if you need any other stuff in math, please use our google custom search here. WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6