EQUATION OF TANGENT WHICH IS PARALLEL OR PERPENDICULAR TO THE LINE

Tangent :

The tangent line (or simply tangent) to a plane curve at a given point is the straight line that just touches the curve at that point.

Equation of tangent :

(y-y1)  =  m(x-x1)

Normal :

The normal at a point on the curve is the straight line which is perpendicular to the tangent at that point. The tangent and the normal of a curve at a point are illustrated in the adjoining figure.

Equation of normal :

(y-y1)  =  (-1/m)(x-x1)

Problem 1 :

Find the equations of the tangents to the curve

y  =  1+x3

for which the tangent is orthogonal with the line

x+12y  =  12

Solution :

y  =  1+x3

Slope of tangent drawn at the point (x, y).

dy/dx  =  3x2

Slope of normal  =  -1/3x ------(1)

The tangent line is perpendicular to the given line

x+12y  =  12

y  =  -x/12 + 1

Slope (m)  =  -1/12 ------(2)

(1)  =  (2)

-1/3x2  =  -1/12

3x2  =  12

x2  =  4

x  =  2, -2

y  =  1+x3

When x  =  2

y  =  1+23

y  =  9

When x  =  -2

y  =  1+(-2)3

y  =  -7

So, the required points are (2, 9) and (-2, -7)

Equation of tangent :

Slope of tangent at the point (2, 9) is 

m  =  3(2)2

m  =  12

Equation of tangent at the point (2, 9) :

(y-9)  =  12(x-2)

y-9  =  12x-24

12x-y-24+9  =  0

12x-y-15  =  0

Equation of tangent at the point (-2, -7) :

(y+7)  =  12(x+2)

y+7  =  12x+24

12x-y+24-7  =  0

12x-y+17  =  0

Problem 2 :

Find the equations of the tangents to the curve

y  =  (x+1)/(x-1)

which are parallel to the line x+2y  =  6.

Solution :

y  =  (x+1)/(x-1)

Differentiating with respect to x.

Using quotient rule,

u  =  x+1 and v  =  x-1

u'  =  1 and v'  =  1

dy/dx  =  (x-1)(1)-(x+1)(1) / (x-1)2

=  (x-1-x-1) / (x-1)2

=  -2/(x-1)  ---(1)

Slope of the given line :

x+2y  =  6

y  =  -x/2+3

m  =  -1/2---(2)

Since the tangent drawn to the curve at the point (x, y) is parallel to the given line

(1)  =  (2)

-2/(x-1)2  =  -1/2

4  =  (x-1)2

(x-1)  =  ±2

x-1  =  2

x  =  3

y  =  (3+1)/(3-1)

y  =  2

 x - 1  =  -2

x  =  -1

y  =  (-1+1)/(-1-1)

y  =  0

Equation of the tangent passes through (3, 2) :

y-2  =  (-1/2)(x-3)

2(y-2)  =  -1(x-3)

2y-4  =  -x+3

x+2y-4-3  =  0

x+2y-7  =  0

Equation of the tangent passes through (-1, 0) :

y-0  =  (-1/2)(x+1)

2y  =  -1(x+1)

2y  =  -x-1

x+2y+1  =  0

Problem 3 :

Find the equation of tangent and normal to the curve given by

x  =  7 cos t and y  =  2 sin t for all t

at any point on the curve.

Solution :

Slope of tangent :

dx/dt  =  -7 sin t and dy/dt  =  2 cos t

dy/dx  =  2 cost/(-7 sin t)

dy/dx  =  (-2/7) (cost/sin t)

Equation of tangent :

 (y-2sin t)  =  (-2/7) (cost/sin t)(x-7cost)

7sint (y-2sin t)  =  (-2cost)(x-7cost)

(2cost) x + (7sint)y  =  14cos2t + 14sin2t

(2cost) x + (7sint)y  =  14(cos2t + sin2t)

(2cost) x + (7sint)y  =  14(1)

(2cost) x + (7sint)y  =  14

Equation of normal :

 (y-2sin t)  =  (7/2) (sin t/cos t)(x-7cost)

2cost (y-2sin t)  =  (7sint)(x-7cost)

(2cost)y-4sint cost  =  (7sint)x - 49sint cost

(7sint)x - (2cost)y - 49sint cost + 4sintcost  =  0

(7sint)x - (2cost)y - 45sint cost  =  0

Problem 4 :

Find the equation of the tangent to the curve

y = x2 – 2x + 7

which is perpendicular to the line 5y - 15x = 13

Solution :

y = x2 – 2x + 7

Differentiate with respect to x, we get

dy/dx = 2x - 2(1) + 0

dy/dx = 2x - 2

Slope of the given line 5y - 15x = 13

5y = 15x + 13

y = 3x + (13/5)

Slope = 3

Slope of the perpendicular line = -1/3

2x - 2 = -1/3

6x - 6 = -1

6x = -1 + 6

6x = 5

x = 5/6

When x = 5/6, we get y  = (5/6)2 – 2(5/6) + 7

= 25/36 - 5/3 + 7

= (25 - 60 + 252)/36

= 217/36

Equation of tangent :

y - 217/36 = -1/3(x - 5/6)

y - 217/36 = -x/3 + 5/18

y = -x/3 + 5/18 + 217/36

y = (-12x + 10 + 217)/36

36y = -12x + 227

12x + 36y = 227

Problem 5 :

Find the equation of the normal to the curve y = x3 +2x +6 which are parallel to the line x + 14y + 4 = 0

Solution :

Normal will be parallel to line x + 14y + 4 = 0

14y = - x - 4

y = (-1/14)x - 2/7

Slope = -1/14

y = x3 +2x +6

dy/dx = 3x2 + 2(1) + 0

slope of tangent = 3x2 + 2

Slope of normal = -1/(3x2 + 2)

-1/(3x2 + 2) = -1/14

3x2 + 2 = 14

3x2 = 12

x2 = 4

x = 2 and x = -2

When x = 2, y = 23 +2(2) +6

y = 18

When x = -2, y = (-2)3 +2(-2) +6

y = -12 + 6

y = -6

So, the required points are (2, 18) and (-2, -6)

Equation of normal :

y - 8 = -1/14 (x - 2)

14y - 112 = -x + 2

x + 14y - 112 - 2 = 0

x + 14y - 114 = 0

Equation of normal :

y + 6 = -1/14 (x + 2)

14y + 84 = -x - 2

x + 14y + 84 + 2 = 0

x + 14y + 86 = 0

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 167)

    May 22, 25 09:59 AM

    digitalsatmath211.png
    Digital SAT Math Problems and Solutions (Part - 167)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 23)

    May 21, 25 01:19 PM

    apcalculusab22.png
    AP Calculus AB Problems with Solutions (Part - 23)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 166)

    May 21, 25 05:33 AM

    digitalsatmath210.png
    Digital SAT Math Problems and Solutions (Part - 166)

    Read More