EQUATION OF CIRCLE WITH CENTER AND RADIUS

Standard form equation of a circle :

(x - h)2 + (y - k)2  =  r2

Here (h, k) stands for center of the circle and "r" stands for radius.

If the center of the circle is at origin, the equation will become

 x 2 + y 2  =  r2

Example 1 :

Find the equation of the circle if the center and radius are (2, − 3) and 4 respectively.

Solution :

Since center of the circle is at the point (2, -3), the equation of the circle is

 (x - h)2 + (y - k)2  =  r2

Here (h, k) ==>  (2, -3) and r  =  4

 (x - 2)2 + (y - 3)2  =  42

By comparing (x - 2)and (y - 3)with the algebraic identity (a - b)2, we get

x2 - 2(x)(2) + 22 + y2 - 2(y)(3) + 32  =  42

x2 - 4x + 4 + y2 - 6y + 9  =  16

x2 + y2  - 4x - 6y + 13  =  16

x2 + y2  - 4x - 6y + 13 - 16  =  0

x2 + y2  - 4x - 6y - 3  =  0

Hence the required equation of the circle is x2 + y2  - 4x - 6y - 3  =  0

Example 2 :

Find the equation of the circle with center (-2, 5) and radius 3. Show that it passes through the point (2, 8).

Solution :

Since center of the circle is at the point (2, -3), the equation of the circle is

 (x - h)2 + (y - k)2  =  r2

Here (h, k) ==>  (-2 , 5) and r  =  3

 (x - (-2))2 + (y - 5)2  =  32

 (x + 2)2 + (y - 5)2  =  32

By comparing (x + 2)and (y - 5)with the algebraic identity (a + b)and (a - b)2, we get

x2 - 2(x)(2) + 22 + y2 - 2(y)(5) + 52  =  32

x2 - 4x + 4 + y2 - 10y + 25  =  9

x2 + y2 - 4x - 10y + 29  =  9

x2 + y2 - 4x - 10y + 29 - 9  =  0

x2 + y2 - 4x - 10y + 20  =  0

Hence the required equation of the circle is x2 + y2 - 4x - 10y + 20  =  0

To show that the circle is passing through the point (2, 8), we need to apply this point in the above equation.

x = 2 and y = 8

22 + 82 - 4(2) - 10(8) + 20  =  0

4 + 64 - 8 - 80 + 20  =  0

88 - 88  =  0

0 = 0

Since the point (2, 8) satisfies the above equation, we can say that the point (2, 8) is passing through the circle.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 193)

    Jun 25, 25 01:48 AM

    Digital SAT Math Problems and Solutions (Part - 193)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 192)

    Jun 24, 25 10:09 AM

    digitalsatmath263.png
    Digital SAT Math Problems and Solutions (Part - 192)

    Read More

  3. SAT Math : Problems on Exponents and Radicals

    Jun 20, 25 08:15 PM

    SAT Math : Problems on Exponents and Radicals

    Read More