DERIVATIVES OF RADICAL FUNCTIONS WORKSHEET

Find the derivative of the following radical functions with respect to x :

1. y = √(x + 2)

2. y = √(2x - 1)

3. y = √(3x2 + 5)

4. y = √(2x4 + 2x - 1)

5. y = (x+ 2x)√x

6. y = (√x + 2x)/x2 - 1

7. ⁴√(7m3 - 4m2 + 2)

8. y = (x - 3)√(x - 3)

9. y = √(4 - √(x - 2))

10.  log (2x2 - 1)/√x

11. Find the equation of tangent to the curve at the point (1, e).

y = ln √(2 - x)

12. y = √cos 2x

13. y = tan √cos x

1. Answer :

y = √(x + 2)

y' = {1/[2√(x + 2)]}(x + 2)'

y' = {1/[2√(x + 2)]}(1)

y' = 1/[2√(x + 2)]

2. Answer :

y = √(2x - 2)

y' = {1/[2√(2x - 1)]}(2x - 1)'

y' = {1/[2√(2x - 1)]}(2)

y' = 1/√(2x - 1)

3. Answer :

y = √(3x2 + 5)

y' = {1/[2√(3x2 + 5)]}(3x2 + 5)'

y' = {1/[2√(3x2 + 5)]}(6x)

= 3x/√(3x2 + 5)

4. Answer :

y = √(2x4 + 2x - 1)

y' = {1/[2√(2x4 + 2x - 1)]}(2x4 + 2x - 1)'

y' = {1/[2√(2x4 + 2x - 1)]}(8x3 + 2)

= (4x3 + 1)/(2x4 + 2x - 1)

5. Answer :

y = (x+ 2x)√x

Since two x terms are multiplied, we have to use the product rule to find the derivative.

Let u = x+ 2x.

u' = 3x2 + 2(1)

  = 3x2 + 2

Let v = √x.

v' = 1/2√x

Product rule :

(uv)' = uv' + u'v

y' = (x+ 2x)(1/2√x) + (3x2 + 2)√x

= (x3/2√x + 2x/2√x) + 3x2√x + 2√x

= (1/2)x(3-1/2) + x(1 - 1/2) + 3x(2 + 1/2) + 2√x

= (1/2)x5/2 + x1/2 + 3x5/2 + 2√x

= [(1/2) + 3]x5/2 + √x + 2√x

  = (7/2)x5/2 + 3√x

6. Answer :

y = (√x + 2x)/x2 - 1

In the above function, we have variable x in both numerator and denominator.

So, we have to use the quotient rule to find the derivative 

Quotient rule :

(u/v)' = (vu' - uv')/v2

Let u = √x + 2x.

u' = 1/2√x + 2(1)

= 1/2√x + 2

Let v = x2 - 1.

v' = 2x - 0

= 2x 

= [(x2 - 1)(1/2√x + 2) - (√x + 2x) (2x)]/(x2 - 1)2

7. Answer :

 ⁴√(7m3 - 4m2 + 2)

Since we have 4th root here, we write it down in exponential form and then using chain rule we find the derivative.

y = (7m3 - 4m2 + 2)1/4

= (1/4) (7m3 - 4m2 + 2)(1/4) - 1 [7(3m2) - 4(2m) + 0]

= (1/4) (7m3 - 4m2 + 2)(1 - 4)/4 [21m2 - 8m]

= (1/4) (7m3 - 4m2 + 2)-3/4 [21m2 - 8m]

8. Answer :

y = (x - 3)√(x - 3)

Since these two functions are multiplied, we have to use product rule to find the derivative.

u = x - 3 and v = √(x - 3)

u' = 1 - 0 and v' = 1/2√(x - 3)

u' = 1 and v' = 1/2√(x - 3)

d(uv) = uv' + vu'

= (x - 3)[ 1/2√(x - 3)] + √(x - 3) (1)

= [(x - 3) + 2√(x - 3)√(x - 3)] / 2√(x - 3)

= [(x - 3) + 2(x - 3)] / 2√(x - 3)

= (x - 3 + 2x - 6) / 2√(x - 3)

= (3x - 9) / 2√(x - 3)

= 3(x - 3) / 2√(x - 3)

9. Answer :

y = √(4 - √(x - 2))

Squring on both sides

y2 = 4 - √(x - 2)

Differentiating with respect to x, we get

2y(dy/dx) = 0 - 1/2√(x - 2) (1)

2y(dy/dx) = - 1/2√(x - 2)

dy/dx = (1/2y) (-1/2√(x - 2))

= -1/4y√(x - 2)

Applying the value of y, we get

= -1/4√(x - 2) √(4 - √(x - 2)) 

10. Answer :

Let y = log (2x2 - 1)/√x

Using the rules of logarithms,

log (m/n) = log m - log n

y = log (2x2 - 1) - log √x

Differentitating with respect to x, we get

dy/dx = 1/(2x2 - 1) (4x - 0) - 1/2√x

= 4x/(2x2 - 1) - 1/2√x

11. Answer :

Find the equation of tangent to the curve at all points.

y = ln √(2 - x)

dy/dx = 1/2√(2 - x) (0 - 1)

Slope = -1/2√(2 - x)

Equation of tangent at (1, e)

Slope at (1, e) = -1/2√(2 - 1)

= -1/2√1

= -1/2

Equation of tangent :

(y - y1) = m(x - x1)

y - e = -1/2 (x - 1)

y = -x/2 + 1/2 + e

12. Answer :

y = √cos 2x

Differentiate with respect to x

dy/dx = (1/2√cos 2x) (-sin 2x) (2)

dy/dx = (-2(sin 2x)/2√cos 2x) 

dy/dx = (-sin 2x)/√cos 2x

= (-sin 2x)/√cos 2x

13. Answer :

y = tan √cos x

Differentiate with respect to x,

dy/dx = sec2 (√cos x) (1/2√cos x) (-sin x)

= (-sin x)sec2 (√cos x)/2√cos x

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math : Problems on Exponents and Radicals

    Jun 20, 25 08:15 PM

    SAT Math : Problems on Exponents and Radicals

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 191)

    Jun 20, 25 07:44 PM

    digitalsatmath259.png
    Digital SAT Math Problems and Solutions (Part - 191)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 190)

    Jun 19, 25 08:35 PM

    digitalsatmath257.png
    Digital SAT Math Problems and Solutions (Part - 190)

    Read More