DERIVATIVES OF INVERSE FUNCTIONS

Conider a function f(x). Let g(x) be the inverse function of f(x). That is,

g(x) = f-1(x)

Take the function f on both sides using the operation function composition.

f  g(x)] = f ∘ f-1(x)

f[g(x)] = f[f-1(x)]

f[g(x)] = f1-1(x)

f[g(x)] = f0(x)

f[g(x)] = x

Find the derivative on both sides with respect to x. (Use chain rule on the left side. That is, first find the derivative of f, then by chain rule, find the derivative of g(x)).

f'[g(x)] ⋅ g'(x) = 1

Divide both sides by f'[g(x)].

Replace g(x) by f-1(x).

Example 1 :

Let g(x) be the inverse of f(x). If f(x) = 2x + 1, find g'(2).

Solution :

Since g(x) is the inverse of f(x),

g(x) = f-1(x)

Formula to find the derivative of g(x).

Substitute x = 2.

Let g(2) = k.

Since g(x) is the inverse of f(x),

derivativeofinversefunction1

Therefore,

f(k) = 2

2k + 1 = 2

Subtract 1 from both sides.

2k = 1

Divide both sides by 2.

k = ½

Since g(2) = k,

g(2) = ½

f(x) = 2x + 1

f'(x) = 2(1) + 0

f'(x) = 2

Substitute x = ½.

f'(½) = 2

Therefore,

g'(2) = ½

Example 2 :

Given : f(x) = x3 + x + 5. If g(x) is the inverse of f(x), find g'(5).

Solution :

Since g(x) is the inverse of f(x),

g(x) = f-1(x)

Formula to find the derivative of g(x).

Substitute x = 5.

Let g(5) = k.

Since g(x) is the inverse of f(x),

f(k) = 5

k3 + k + 5 = 5

Subtract 5 from both sides.

k3 + k = 0

k(k2 + 1) = 0

k = 0

k2 + 1 = 0

√k2 = -1

k = -1

(imaginary)

Therefore,

k = 0

Since g(5) =k,

g(5) = 0

f(x) = x3 + x + 5

f'(x) = 3x2 + 1

Substitute x = 0.

f'(0) = 3(0)2 + 1

f'(0) = 0 + 1

f'(0) = 1

Therefore,

g'(5) = ¹⁄₁

g'(5) = 1

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Algebra Word Problems Worksheet with Answers

    Nov 10, 25 06:30 PM

    tutoring.png
    Algebra Word Problems Worksheet with Answers

    Read More

  2. Tricky SAT Math Problems Solved Easily

    Nov 09, 25 07:02 PM

    digitalsatmath404.png
    Tricky SAT Math Problems Solved Easily

    Read More

  3. 10 Hard SAT Math Questions (Part - 33)

    Nov 07, 25 04:31 AM

    10 Hard SAT Math Questions (Part - 33)

    Read More