Derivative of ln(x)

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(x) using chain rule.

Find ᵈʸ⁄d, if

y = ln(x)

Let u = x.

y = ln(u)

Now,

y = ln(u) ----> y is a function of u

u = x ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(u) and u = x.

Substitute u = x.

Therefore,

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Adaptive Learning Platforms

    May 26, 23 12:27 PM

    adaptivelearning1
    Adaptive Learning Platforms: Personalized Mathematics Instruction with Technology

    Read More

  2. Simplifying Expressions with Rational Exponents Worksheet

    May 21, 23 07:40 PM

    tutoring.png
    Simplifying Expressions with Rational Exponents Worksheet

    Read More

  3. Simplifying Rational Expressions Worksheet

    May 20, 23 10:53 PM

    tutoring.png
    Simplifying Rational Expressions Worksheet

    Read More