Derivative of ln(√x)

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(√x) using chain rule.

Find α΅ˆΚΈβ„dβ‚“, if

y = ln(√x)

Let u = √x.

y = ln(u)

Now,

y = ln(u) ----> y is a function of u

u = √x ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(u) and u = βˆšx.

Substitute u = √x.

Therefore,

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact  US  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 39)

    Dec 11, 25 05:59 PM

    10 Hard SAT Math Questions (Part - 39)

    Read More

  2. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  3. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More