Derivative of ln(x)

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(x) using chain rule.

Find ᵈʸ⁄d, if

y = ln(x)

Let u = x.

y = ln(u)

Now,

y = ln(u) ----> y is a function of u

u = x ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(u) and u = x.

Substitute u = x.

Therefore,

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Algebra Word Problems Worksheet with Answers

    Nov 10, 25 06:30 PM

    tutoring.png
    Algebra Word Problems Worksheet with Answers

    Read More

  2. Tricky SAT Math Problems Solved Easily

    Nov 09, 25 07:02 PM

    digitalsatmath404.png
    Tricky SAT Math Problems Solved Easily

    Read More

  3. 10 Hard SAT Math Questions (Part - 33)

    Nov 07, 25 04:31 AM

    10 Hard SAT Math Questions (Part - 33)

    Read More