Derivative of ln(secx + tanx)

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(secx + tanx) using chain rule.

Find ᵈʸ⁄d, if

y = ln(secx + tanx)

Let t = secx + tanx.

y = ln(t)

Now,

y = ln(t) ----> y is a function of t

t = secx + tanx ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(t) and t = secx + tanx.

Substitute t = secx + tanx.

Therefore,

[ln(secx + tanx)]' = secx

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 28)

    Oct 14, 25 10:57 AM

    10 Hard SAT Math Questions (Part - 28)

    Read More

  2. SAT Math Questions and Answers

    Oct 13, 25 01:09 PM

    SAT Math Questions and Answers

    Read More

  3. 10 Hard SAT Math Questions (Part - 27)

    Oct 13, 25 11:55 AM

    digitalsatmath395.png
    10 Hard SAT Math Questions (Part - 27)

    Read More