Derivative of ln(secx + tanx)

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(secx + tanx) using chain rule.

Find ᵈʸ⁄d, if

y = ln(secx + tanx)

Let t = secx + tanx.

y = ln(t)

Now,

y = ln(t) ----> y is a function of t

t = secx + tanx ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(t) and t = secx + tanx.

Substitute t = secx + tanx.

Therefore,

[ln(secx + tanx)]' = secx

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 12)

    Sep 12, 25 09:50 PM

    10 Hard SAT Math Questions (Part - 12)

    Read More

  2. 10 Hard SAT Math Questions (Part - 11)

    Sep 11, 25 08:23 AM

    10 Hard SAT Math Questions (Part - 11)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 256)

    Sep 10, 25 07:02 PM

    Digital SAT Math Problems and Solutions (Part - 256)

    Read More