Derivative of ln(secx + tanx)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(secx + tanx) using chain rule.

Find ᵈʸ⁄d, if

y = ln(secx + tanx)

Let t = secx + tanx.

y = ln(t)

Now,

y = ln(t) ----> y is a function of t

t = secx + tanx ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(t) and t = secx + tanx.

Substitute t = secx + tanx.

Therefore,

[ln(secx + tanx)]' = secx

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact  Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 13, 25 12:45 PM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 39)

    Dec 11, 25 05:59 PM

    10 Hard SAT Math Questions (Part - 39)

    Read More