Derivative of ln(cscx - cotx)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

We know the derivative of ln(x), which is ¹⁄ₓ.

[ln(x)]' = ¹⁄ₓ

We can find the derivative of ln(cscx - cotx) using chain rule.

Find ᵈʸ⁄d, if

y = ln(cscx - cotx)

Let t = cscx - cotx.

y = ln(t)

Now,

y = ln(t) ----> y is a function of t

t = cscx - cotx ----> is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ln(t) and t = cscx - cosx.

Substitute t = cscx - cosx.

Therefore,

[ln(cscx - cotx)]' = cscx

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Dec 31, 25 09:15 PM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More

  2. Solving the HARDEST SAT Math Questions ONLY using Desmos

    Dec 31, 25 05:53 AM

    Solving the HARDEST SAT Math Questions ONLY using Desmos

    Read More

  3. Times Table Shortcuts

    Dec 30, 25 07:14 PM

    multiplicationtricks3.png
    Times Table Shortcuts - Concept - Examples

    Read More