Derivative of e to the Power ln(x)

We know the derivative of ex, which is ex.

(ex)' = ex

We can find the derivative of eln(x) using chain rule.

Find ᵈʸ⁄d, if

y = eln(x)

Let u = x.

y = eln(u)

Let v = ln(u).

y = ev

Now,

y = ev ----> y is a function of v

v = ln(u) ----> v is is a function of u

u = x ----> u is is a function of x

By chain rule, the derivative of y with respect to x :

Substitute y = ev, v = cotu and u = x.

Substitute v = ln(u).

Substitute u = x.

Therefore,

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 31)

    Oct 27, 25 10:32 AM

    10 Hard SAT Math Questions (Part - 31)

    Read More

  2. Time and Work Problems

    Oct 20, 25 07:13 AM

    Time and Work Problems - Concept - Solved Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 30)

    Oct 17, 25 07:27 PM

    digitalsatmath397.png
    10 Hard SAT Math Questions (Part - 30)

    Read More