Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
If n is any positive integer, then the principal nth root of x is defined as follows :
√x = y means x = yn
If n is even, we must have a ≥ 0 and b ≥ 0.
Thus
4√81 = 3, because 34 = 81 and 3 ≥ 0
3√(-8) = -2, because (-2)3 = -8
But √(-8), )4√(-8) and 6√(-8) are not defined.
For instance √(-8) is not defined, because the square of every real number is nonnegative.
Notice that
√(32) = √9 = 3
but
√(-3)2 = √9 = 3 = |-3|
So, the equation √a2 = a is not always true: it is true only when a ≥ 0. However, we can always write √a2 = |a|. This last equation is true not only for square roots, but for any even root.
This and other rules used in working with nth roots are listed below. In each property we assume that all the given roots exist.
Property 1 :
n√(ab) = n√a ⋅ n√b
Example :
3√(-8 ⋅ 27) = 3√(-8) ⋅ 3√27
= (-2)(3)
= -6
Property 2 :
n√(a/b) = n√a/n√b
Example :
4√(16/81) = 4√16/4√81
= 2/3
Property 3 :
m√[n√a] = mn√a
Example :
√[3√729] = 6√729
= 3
Property 4 :
n√(an) = a, if n is odd
Example :
3√(-5)3 = -5
3√(-2)3 = -2
Property 5 :
n√(an) = |a|, if n is even
Example :
4√(-3)4 = |-3| = 3
Example 1 :
Simplify :
3√(x4)
Solution :
3√(x4) = 3√(x3x)
= 3√(x3) ⋅ √x
= 3√(x3) ⋅ 3√x
= x(3√x)
Example 2 :
Simplify :
4√(81x8y4)
Solution :
4√(81x8y4) = 4√81 ⋅ 4√x8 ⋅ 4√y4
= 4√(34) ⋅ 4√(x2)4 ⋅ 4√y4
= 3x2 ⋅ |y|
= 3x2y
Example 3 :
Simplify :
√32 + √200
Solution :
√32 + √200 = √(16 ⋅ 2) + √(100 ⋅ 2)
= √16 ⋅ √2 + √100 ⋅ √2
= 4√2 + 10√2
= (4 + 10)√2
= 14√2
Example 4 :
Simplify the following expression, if b > o.
√(25b) - √(b3)
Solution :
√(25b) - √(b3) = √25√b - √(b2 ⋅ b)
= √25√b - √(b2)√b
= √25√b - √(b2)√b
= 5√b - b√b
= (5 - b)√b
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 05, 25 04:04 AM
Dec 03, 25 07:02 AM
Dec 02, 25 09:27 AM