DEFINITION OF Nth ROOT

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If n is any positive integer, then the principal nth root of x is defined as follows :

√x = y  means x = yn

If n is even, we must have a ≥ 0 and b ≥ 0.

Thus

481 = 3, because 34 = 81 and 3 ≥ 0

3√(-8) = -2, because (-2)3 = -8

But √(-8), )4√(-8) and 6√(-8) are not defined.

For instance √(-8) is not defined, because the square of every real number is nonnegative.

Notice that 

√(32) = √9 = 3

but

√(-3)2 = √9 = 3 = |-3|

So, the equation √a2 = a is not always true: it is true only when a ≥ 0. However, we can always write √a2 = |a|. This last equation is true not only for square roots, but for any even root. 

This and other rules used in working with nth roots are listed below. In each property we assume that all the given roots exist.

Properties of nth Roots

Property 1 :

n√(ab) = n√a  n√b

Example :

3√(-8 ⋅ 27) = 3√(-8)  3√27

= (-2)(3)

= -6

Property 2 :

n√(a/b) = n√a/n√b

Example :

4√(16/81) = 4√16/4√81

= 2/3

Property 3 :

m√[n√a] = mn√a

Example :

√[3√729] = 6√729

= 3

Property 4 :

n√(an) = a, if n is odd

Example :

3√(-5)3 = -5

3√(-2)3 = -2

Property 5 :

n√(an) = |a|, if n is even

Example :

4√(-3)4 = |-3| = 3

Simplifying Expressions Involving nth Roots

Example 1 :

Simplify :

3√(x4)

Solution :

3√(x4) = 3√(x3x)

3√(x3) ⋅ √x

3√(x3⋅ 3√x

= x(3√x)

Example 2 :

Simplify :

4√(81x8y4)

Solution :

4√(81x8y4) = 4√81 ⋅ 4√x⋅ 4√y4

4√(34⋅ 4√(x2)⋅ 4√y4

= 3x⋅ |y|

= 3x2y

Combining Radicals

Example 3 :

Simplify :

√32 + √200

Solution :

√32 + √200 = √(16 ⋅ 2) + √(100 ⋅ 2)

= √16 ⋅ √2 + √100 ⋅ √2

= 4√2 + 10√2

= (4 + 10)√2

= 14√2

Example 4 :

Simplify the following expression, if b > o.

√(25b) - √(b3)

Solution :

√(25b) - √(b3) = √25√b - √(b⋅ b)

= √25√b - √(b2)√b

= √25√b - √(b2)√b

= 5√b - b√b

= (5 - b)√b

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 29, 25 04:21 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. 10 Hard SAT Math Questions (Part - 39)

    Dec 28, 25 11:20 PM

    10 Hard SAT Math Questions (Part - 39)

    Read More

  3. 10 Hard SAT Math Questions (Part - 41)

    Dec 28, 25 06:05 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More