DEFINE INTEGRALS

Example 1 :

Evaluate the following

Solution :

Let t  =  cos x

Differentiating both sides with respect to x

dt  =  -sin x dx and sin x dx  =  -dt

We have changed the given function in terms of t from the variable x .So, we need to change the limits also.

When x  =  0

t  =  cos 0

t  =  1

When x  =  Π/2

t  =  cos Π/2

t  =  0

Example 2 :

Evaluate the following

Integral 0 to Π/2 sin² x

Solution :

To solve this problem we have to use the trigonometric formula for sin² x.

sin²x  =   (1 - cos 2x)/2

Example 3 :

Evaluate the following

Solution :

t  =  Sin⁻¹x

Differentiating with respect to x on both sides

 dt  =  1/√(1-x²) dx

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 13)

    Sep 14, 25 09:32 PM

    digitalsatmath364.png
    10 Hard SAT Math Questions (Part - 13)

    Read More

  2. 10 Hard SAT Math Questions (Part - 12)

    Sep 12, 25 09:50 PM

    10 Hard SAT Math Questions (Part - 12)

    Read More

  3. 10 Hard SAT Math Questions (Part - 11)

    Sep 11, 25 08:23 AM

    10 Hard SAT Math Questions (Part - 11)

    Read More