DECOMPOSITION METHOD

About "Decomposition method"

Decomposition Method :

Sometimes it is very difficult to integrate the given function directly. But it can be integrated after decomposing it into a sum or difference of number of functions whose integrals are already known.

In most of the cases the given integrand will be any one of the algebraic, trigonometric or exponential forms, and sometimes combinations of these functions.

Integration using decomposition method - Examples

Example 1:

Integrate (1 + x²)³ dx 

Solution :

First let us expand the given expression using the formula (a + b)3

(a + b) =  a3 + 3a2 b + 3ab2 + b3

(1+ x²)³  =  1  + 3x2 + 3x4 + x6 

=  ∫dx + 3∫x²dx + 3∫x⁴ dx + ∫ x⁶ dx

=  ∫ dx + 3 ∫(x²) dx + 3 ∫ (x⁴) dx + ∫ x⁶ dx

=  x + 3 (x³/3) + 3 x⁵/5 + x⁷/7 + c

=  x + x³ + (3/5) x5 + (1/7) x⁷+ c

Example 2:

Integrate (tan x + cot x)² dx 

Solution :

(a + b)2  =  a2 + 2ab + b2

(tan x + cot x)²  =  tan2x + cot2x + 2 tan x cot x

  =  tan2x + cot2x + 2 tan x (1/tan x)

  =  tan2x + cot2x + 2 

   =  ∫ (tan²x  + cot2x  + 2)  dx

  =  ∫ (sec²x - 1  + cosec2x - 1  + 2)  dx

  =  ∫(sec²x + cosec2x)  dx

  =  ∫sec²x dx + ∫cosec²x dx 

  =  tan x -cot x + c 

Example 3:

Integrate √(1 + sin 2x) dx 

Solution :

∫√(1 + sin 2x) dx 

1  =  sin2x + cos2

  =  ∫√(sin2x + cos2x + 2 sin x cos x) dx 

  =  ∫√(sin x + cos x)2 dx 

  =  ∫(sin x + cos x) dx 

  =  ∫sin x dx + ∫cos x dx

  =  - cos x + sin x + c

Example 4 :

Integrate the following functions with respect to x :

(√x + (1/√x))2

Solution :

∫ (√x + (1/√x))dx

Expanding this using the formula (a + b)2  =  a2 + 2ab + b2 

  =  ∫ [(√x)2 + (1/√x)+ 2√x(1/√x)] dx

  =  ∫ x dx + (1/x) dx + 2  dx

  =  (x2/2) + log x + 2 x + c

Example 5 :

Integrate the following functions with respect to x :

(2x - 5)(36 + 4x)

Solution :

(2x - 5)(36 + 4x) dx 

  =  ∫ (72x + 8x2 - 180 - 20x) dx

  =  ∫ (8x2 + 52x - 180) dx

  =  ∫ 8x2 dx + 52x dx - 180 dx

  =  (8/3)x3 + 26x2 - 180 x + c

Related pages

After having gone through the stuff given above, we hope that the students would have understood, "Decomposition method"

Apart from the stuff given in "Decomposition method", if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...