DE MOIVRE'S THEOREM AND ITS APPLICATIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Theorem :

For any complex number cos θ + i sin θ and any integer n,

(cos θ + i sin θ)n = cos nθ + i sin nθ

Corollary :

(cos θ - i sin θ)n = cos nθ - i sin nθ

(cos θ + i sin θ)-n = cos nθ - i sin nθ

(cos θ - i sin θ)-n = cos nθ + i sin nθ

Solved Problems

Problem 1 :

Simplify :

Solution :

Problem 2 :

Simplify :

Solution :

Problem 3 :

If z = cos θ + i sin θ, find

Solution :

Part (i) :

Part (ii) :

Problem 4 :

Simplify :

Solution :

Let z = cos 2θ + i sin 2θ. Then


For any complex number z, if |z| = 1, then


Problem 5 :

Simplify :

Solution :

Problem 6 :

Simplify :

(1 + i)18

Solution :

Write the givcen complex number in polar form.

(1 + i)18 = r(cos θ + i sin θ)

The point on the Argand plane corresponding to the complex number (1 + i) is (1, 1).

And the point (1, 1) lies in the first quadrant.

In the first quadrant,

Writing the given complex number in polar form,

Raising to the power of 18 on both sides,

Problem 7 :

Simplify :

(-√3 + 3i)31

Solution :

Write the givcen complex number in polar form.

(-√3 + 3i)31 = r(cos θ + i sin θ)

The point on the Argand plane corresponding to the complex number (-√3 + 3i) is (-√3, 3).

And the point (-√3, 3) lies in the second quadrant.

In the second quadrant,

Writing the given complex number in polar form,

Raising to the power of 31 on both sides,

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More