CONVERTING POLAR TO RECTANGULAR FORM COMPLEX NUMBERS

θ

sin θ

cos θ

0

0

1

30

1/2

√3/2

45

1/√2

1/√2

60

√3/2

1/2

90

1

0

Properties of Polar Form

Property 1 :

If z = r (cos θ + i sin θ), then

z-1  =  (1/r) (cos θ - i sin θ)

Property 2 :

If z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) then

 zz =  r1r2 (cos (θ1 θ2) + i sin (θθ2))

Property 3 :

If z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) then

 z1z =  (r1/r2) (cos (θ1 θ2) + i sin (θ1 θ2))

Find the rectangular form of the following complex numbers :

Problem 1 :

[cos (π/6) + i sin (π/6)] [cos (π/12) + i sin (π/12)] 

Solution :

=  [cos (π/6) + i sin (π/6)] [cos (π/12) + i sin (π/12)] 

=  [cos ((π/6) + (π/12)) + i sin ((π/6) + (π/12))]

=  cos (2π + π)/12 + i sin (2π + π)/12

=  cos (3π/12) + i sin (3π/12)

=  cos (π/4) + i sin (π/4)

  =  (1/√2) + i (1/√2)

=  (1/√2)(1 + i)

Problem 2 :

[cos (π/6) - i sin (π/6)]/2 [cos (π/3) + i sin (π/3)] 

Solution :

  =  [cos (π/6) - i sin (π/6)cos (π/3) + i sin (π/3)] 

  =  (1/2) [cos (-π/6)+sin (-π/6)] [cos (-π/3)+i sin (-π/3)] 

  =  (1/2) [cos (-3π/6) + sin (-3π/6)]

   =  (1/2) [cos (-π/2) + sin (-π/2)]

   =  (1/2) [0 + (-1)]

   =  (-1/2) 

Problem 3 :

If (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib show that 

(x12 + y12) (x22 + y22)............ (xn2 + yn2)  =  a2 + b2

Solution :

(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib

Taking modulus on both sides, we get

|(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)|  =  |a + ib|

|(x1 + iy1)| |(x2 + iy2)| |(x3 + iy3)|............|(xn + iyn)|  =  |a + ib|

(x12 + y12(x22 + y22)(x32 + y32) ...............(xn2 + y2)  =  (a2 + b2)

√[(x12 + y12(x22 + y22)(x32 + y32) ..............(xn2 + y2)]  =  (a2 + b2)

Taking squares on both sides, we get 

(x12+y12(x22 + y22)(x32 + y32) ..............(xn2 + y2) =  (a2+b2)

Problem 4 :

If (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib show that 

r = 1 to n tan-1(yr/xr) = tan-1(b/a)  + 2kπ, k ∈ z

Solution :

 (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib

By taking argument on both sides, we get  

arg [(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)]  =  arg(a + ib)

 arg(x1+ iy1) + arg(x2+ iy2)+................arg(x2+ iy2)  =  arg(a + ib)

tan-1(y1/x1) + tan-1(y2/x2) + ..................+ tan-1(yn/xn)  =  tan-1(b/a) 

r = 1 to n tan-1(yr/xr) = tan-1(b/a)  + 2kπ, k ∈ z

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Factoring Quadratic Trinomials

    Apr 26, 24 01:51 AM

    Factoring Quadratic Trinomials - Key Concepts - Solved Problems

    Read More

  2. Factoring Trinomials Worksheet

    Apr 25, 24 08:40 PM

    tutoring.png
    Factoring Trinomials Worksheet

    Read More

  3. Factoring Quadratic Trinomials Worksheet

    Apr 25, 24 08:13 PM

    tutoring.png
    Factoring Quadratic Trinomials Worksheet

    Read More