CONVERTING POLAR TO RECTANGULAR FORM COMPLEX NUMBERS

θ

sin θ

cos θ

0

0

1

30

1/2

√3/2

45

1/√2

1/√2

60

√3/2

1/2

90

1

0

Properties of Polar Form

Property 1 :

If z = r (cos θ + i sin θ), then

z-1  =  (1/r) (cos θ - i sin θ)

Property 2 :

If z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) then

 zz =  r1r2 (cos (θ1 θ2) + i sin (θθ2))

Property 3 :

If z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) then

 z1z =  (r1/r2) (cos (θ1 θ2) + i sin (θ1 θ2))

Find the rectangular form of the following complex numbers :

Problem 1 :

[cos (π/6) + i sin (π/6)] [cos (π/12) + i sin (π/12)] 

Solution :

=  [cos (π/6) + i sin (π/6)] [cos (π/12) + i sin (π/12)] 

=  [cos ((π/6) + (π/12)) + i sin ((π/6) + (π/12))]

=  cos (2π + π)/12 + i sin (2π + π)/12

=  cos (3π/12) + i sin (3π/12)

=  cos (π/4) + i sin (π/4)

  =  (1/√2) + i (1/√2)

=  (1/√2)(1 + i)

Problem 2 :

[cos (π/6) - i sin (π/6)]/2 [cos (π/3) + i sin (π/3)] 

Solution :

  =  [cos (π/6) - i sin (π/6)cos (π/3) + i sin (π/3)] 

  =  (1/2) [cos (-π/6)+sin (-π/6)] [cos (-π/3)+i sin (-π/3)] 

  =  (1/2) [cos (-3π/6) + sin (-3π/6)]

   =  (1/2) [cos (-π/2) + sin (-π/2)]

   =  (1/2) [0 + (-1)]

   =  (-1/2) 

Problem 3 :

If (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib show that 

(x12 + y12) (x22 + y22)............ (xn2 + yn2)  =  a2 + b2

Solution :

(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib

Taking modulus on both sides, we get

|(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)|  =  |a + ib|

|(x1 + iy1)| |(x2 + iy2)| |(x3 + iy3)|............|(xn + iyn)|  =  |a + ib|

(x12 + y12(x22 + y22)(x32 + y32) ...............(xn2 + y2)  =  (a2 + b2)

√[(x12 + y12) (x22 + y22)(x32 + y32) ..............(xn2 + y2)]  =  (a2 + b2)

Taking squares on both sides, we get 

(x12+y12(x22 + y22)(x32 + y32) ..............(xn2 + y2) =  (a2+b2)

Problem 4 :

If (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib show that 

r = 1 to n tan-1(yr/xr) = tan-1(b/a)  + 2kπ, k ∈ z

Solution :

 (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)  =  a + ib

By taking argument on both sides, we get  

arg [(x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn)]  =  arg(a + ib)

 arg(x1+ iy1) + arg(x2+ iy2)+................+ arg(x2+ iy2)  =  arg(a + ib)

tan-1(y1/x1) + tan-1(y2/x2) + ..................+ tan-1(yn/xn)  =  tan-1(b/a) 

r = 1 to n tan-1(yr/xr) = tan-1(b/a)  + 2kπ, k ∈ z

Problem 5 :

Find the product

(3/2) (cos π/3 + i sin π/3) ⋅ 6 (cos 5π/6 + i sin 5π/6)

Solution :

= (3/2) (cos π/3 + i sin π/3) ⋅ 6 (cos 5π/6 + i sin 5π/6)

= (3/2) ⋅ 6 (cos π/3 + i sin π/3)  (cos 5π/6 + i sin 5π/6)

Looks like,

(cos A + i sin A)(cos B + i sin B) = cos (A + B) + i sin (A + B)

= 3 ⋅ 3 (cos (π/3 + 5π/6) +  i sin (π/3 + 5π/6)

= 9 (cos (2π + 5π)/6 +  i sin (2π + 5π)/6

= 9 (cos 7π/6 +  i sin 7π/6)

= 9 [cos (π + π/6) +  i sin (π + π/6)]

Angle lies in third quadrant, then using ASTC, we get 

= 9 [-cos (π/6) -  i sin (π/6)]

= 9 [-√3/2 -  i (1/2)]

= [-9√3/2 -  i (9/2)]

Problem 6 :

Find the product

2 (cos 9π/4 + i sin 9π/4) / 4  (cos (-3π/2) + i sin (-3π/2))

Solution :

= 2 (cos 9π/4 + i sin 9π/4) / 4  (cos(-3π/2) + i sin(-3π/2))

= (1/2) ( cos (9π/4 + 3π/2) + i sin (9π/4 + 3π/2) )

= (1/2) ( cos (9π + 6π)/4) + i sin (9π + 6π)/4) )

= (1/2) ( cos (15π/4) + i sin (15π/4) )

= (1/2) ( cos (4π - π/4) + i sin (4π - π/4) )

= (1/2) ( cos (π/4) + i sin (π/4) )

= (1/2) ( √2/2 + i√2/2 )

= (1/4) (√2 + i√2)

Problem 7 :

Find the product

(cos π/6 + i sin π/6)  (cos π/12 + i sin π/12)

Solution :

= (cos π/6 + i sin π/6)  (cos π/12 + i sin π/12)

= cos (π/6 + π/12) + i sin (π/6 + π/12)

= cos (2π+π)/12 + i sin (2π+π)/12

= cos (3π/12) + i sin (3π/12)

= cos (π/4) + i sin (π/4)

= ( √2/2 + i√2/2 )

Find the corresponding polar coordinates for the given rectangular coordinate where 0 ≤ θ ≤ 2π

Problem 8 :

(-5, -5)

Solution :

Every point will be in the form (x, y)

x = -5 and y = -5

Polar form will be in the form,

= r (cos θ + i sin θ)

r = √(-5)2 + 52

√25 + 25

√50

= 5√2

 θ  = tan-1(y/x)

= tan-1(-5/(-5))

= tan-1(1)

π/4

So, the required answer is

5√2 (cos π/4 + i sin π/4)

Problem 9 :

(-√3, 1)

Solution :

Every point will be in the form (x, y)

x = -√3 and y = 1

Polar form will be in the form,

= r (cos θ + i sin θ)

r = √(-√3)2 + 12

√3+1

√4

= 2

 θ  = tan-1(y/x)

= tan-1(-1/√3)

= -tan-1(1/√3)

= -π/6

π - π/6

= 5π/6

So, the required answer is

(cos 5π/6 + i sin 5π/6)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 10, 24 05:46 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 85)

    Dec 10, 24 05:44 AM

    digitalsatmath72.png
    Digital SAT Math Problems and Solutions (Part - 85)

    Read More

  3. How to Find Slant Asymptote of a Function

    Dec 08, 24 08:11 PM

    slantasymptote.png
    How to Find Slant Asymptote of a Function (Oblique) - Examples with step by step explanation

    Read More