CONVERTING COMPLEX NUMBERS TO POLAR FORM

Let r and θ be polar coordinates of the point P(x, y) that corresponds to a non-zero complex number z = x + iy . The polar form or trigonometric form of a complex number P is 

z = r (cos θ + i sin θ)

The value "r" represents the absolute value or modulus of the complex number z .

The angle θ is called the argument or amplitude of the complex number z denoted by θ = arg(z).

The angle θ has an infinitely many possible values, including negative ones that differ by integral multiples of 2π . Those values can be determined from the equation tan θ  = y/x

To find the principal argument of a complex number, we may use the following methods

1st quadrant

2nd quadrant

3rd quadrant

4th quadrant

θ  =  α

θ  =  π - α

θ  =  - π + α 

θ  =  -α

The capital A is important here to distinguish the principal value from the general value. Evidently, in practice to find the principal angle θ, we usually compute α = tan−1 |y/x| and adjust for the quadrant problem by adding or subtracting α  with π appropriately

arg z = Arg z + 2nπ , n ∈ z.

Write the following complex numbers in polar form. 

Problem 1 :

2 + i 2√3

Solution :

2 + i 23  =  r (cos θ + i sin θ)

r = √22 + (23)2

r = √(4+12)

r = √16

r = 4

α  = tan-1|y/x|

 α  =  tan-1 (23/2)

 α  =  tan-1 (3)

α  =  π/3

Since the complex number 2 + i 23 lies in the first quadrant, has the principal value θ  =  α.

So, the polar form of the given complex number is

Problem 2 :

3 - i 3

Solution :

3 - i 3  =  r (cos θ + i sin θ)

r = √32 + (-3)2

r = √(9+3)

r = √12

r = 2√3

α  = tan-1|y/x|

 α  =  tan-1 |-3/3|

 α  =  tan-1 (1/3)

α  =  π/6

Since the complex number 3-i3 lies in the fourth quadrant, has the principal value θ  =  -α.

θ  =  -π/6

3 - i 3  =  2√3 (cos (-π/6) + i sin (-π/6)

3 - i 3  =  2√3 (cos (π/6) - i sin (π/6))

So, the polar form of the given complex number is

Problem 3 :

-2 - i2

Solution :

−2 − i2  =  r (cos θ + i sin θ)

   r  =  (-2)2 + (-2)2

r = √(4+4)

r = 2√2

α  = tan-1|y/x|

 α  =  tan-1 |2/2|

 α  =  tan-1 (1)

α  =  π/4

Since the complex number −2 − i2 lies in the third quadrant, has the principal value θ  =  -π+α.

θ  =  -π + π/4

θ  =  (-4π+π)/4

θ  =  -3π/4

−2 − i2  =  2√3 (cos ( -3π/4) + i sin ( -3π/4))

So, the polar form of the given complex number is

Problem 4 : 

(i - 1) / [cos (π/3) + i sin  (π/3)]

Solution :

=  (i - 1) / [cos (π/3) + i sin  (π/3)]

=  (i - 1) / [(1/2) + i (3/2)]

=  2(i - 1) / (1 + i3)

=  (2i - 2) / (1 + i√3)

r  =  √[(4 + 2√3 + 4 - 2√3)/4]

r  =  √2

α  = tan-1|(√3+1)/(√3-1)|

 α  =  tan-1 (5π/12

tan 75  =  tan (30 + 45)

=  (tan 30 + tan 45)/(1 - tan 30 tan 45)

=  [(1/√3) + 1]/[1 - (1/√3)1]

=  (1 + √3)/(√3 - 1)

=  (√3 + 1)/(√3 - 1)

(i - 1) / [cos (π/3) + i sin  (π/3)]

  =  √2 (cos (5π/12 + i sin (5π/12)) 

So, the polar form of the given complex number is

Apart from the stuff given aboveif you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Writing Quadratic Functions in Standard Form

    Apr 26, 24 12:39 PM

    Writing Quadratic Functions in Standard Form or Vertex Form

    Read More

  2. Factoring Quadratic Trinomials

    Apr 26, 24 01:51 AM

    Factoring Quadratic Trinomials - Key Concepts - Solved Problems

    Read More

  3. Factoring Trinomials Worksheet

    Apr 25, 24 08:40 PM

    tutoring.png
    Factoring Trinomials Worksheet

    Read More