CONVERT EQUATIONS OF PARABOLAS FROM GENERAL TO VERTEX FORM

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Vertex form equation of a parabola : 

(y - k) = ± a(x - h)2

(i)  If "a" is positive, the parabola opens upward. If it is negative, then the parabola opens downward.

(ii)  First we have to check whether the coefficient of x² is 1 or not. If yes we can follow the second step. Otherwise factor out the coefficient of x² from the equation.

(iii) Keep the x2 and x terms in the right side and keep the y-term and constant term to the left side.

(iv)  Add the square of half of the coefficient of "x" on both sides.

(v) Now the three terms on the right side will be in the form of a2 + 2ab + b2 (or) a2 - 2ab + b2.

a2 + 2ab + b2  =  (a + b)2

a² - 2ab + b2  =  (a - b)2

(vi)  Now we can get the vertex from this equation.

Vertex of the parabola V (h, k)

Example 1 :

Use the information provided to write the vertex form equation of each parabola and sketch the parabola.

y  =  x2 - 4x + 3

Solution :

Step 1 :

The coefficient of x2 is 1.

Step 2 :

Subtract 3 on both sides.

y - 3  =  x2 - 4x + 3 - 3

y - 3  =  x2 - 4x

Step 3 :

Half of the of coefficient of x is 2.

Square of half of the coefficient of x is 22  =  4.

y - 3 + 4  =  x2 - 4x + 4

y - 3 + 4  =  x2 - 2⋅x⋅2 + 22

y + 1  =  (x - 2)2

Step 4 :

By comparing the above equation with vertex form

(y - k)  =  a(x - h)2

we can get the vertex. 

(h, k)  ==>  (2, -1)

Since the coefficient of x2 is positive the parabola opens upward.

Example 2 :

Use the information provided to write the vertex form equation of each parabola and sketch the parabola.

y  =  2x2 - 8x + 9 

Solution :

Step 1 :

The coefficient of x2 is not 1, we have to divide the equation on the right side by 2.

y - 9  =  2x2 - 8x 

y - 9  =  2(x2 - 4x)

Step 2 :

y - 9  =  2(x2 - 2 x 2 + 22 - 22)

y - 9  =  2[(x - 2)2 - 4]

y - 9  =  2(x - 2)2 - 8

y - 9 + 8  =  2(x - 2)2 - 8 + 8

y - 1  =  2 (x - 2)2

Vertex of the parabola is (2, 1).

Example 3 :

Use the information provided to write the vertex form equation of each parabola and sketch the parabola.

y  =  x2 - 6x + 5

Solution :

Step 1 :

The coefficient of x2 is 1.

Step 2 :

Subtract 5 on both sides.

y - 5  =  x2 - 6x + 5 - 5

y - 5  =  x2 - 6x

Step 3 :

Half of the of coefficient of x is 3.

Square of half of the coefficient of x is 32  =  9.

y - 5 + 9  =  x2 - 6x + 9

y + 4  =  x2 - 2⋅x⋅3 + 32

y + 4  =  (x - 3)2

Step 4 :

By comparing the above equation with vertex form

(y - k)  =  a(x - h)2

we can get the vertex. 

(h, k)  ==>  (3, -4)

Since the coefficient of x2 is positive the parabola opens upward.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More