# CONVERT BETWEEN STANDARD AND SCIENTIFIC NOTATION

Scientific notation is a standard way of writing very large and very small numbers so that they’re easier to both compare and use in computations.

## Standard Form to Scientific Notation

Every number in the scientific notation must be in the form of

a x 10n

where ≤ a < 10 and n must be a positive or negative integer.

To convert a number to scientific notation, first we have to identify where the decimal point and non zero digit come.

There are two cases in it.

Case 1 :

To move the decimal point to the left, we have to count number of digits as explained in the example given below.

According to the example given above, we have to move the decimal point 3 digits to the left and exponent of 10 should be 3 (positive integer)

When we do so, we get the scientific notation of the given number.

So,

2301.8 = 2.3018 x 103

Case 2 :

To move the decimal point to the right, we have to count number of digits as explained in the example given below.

According to the example given above, we have to move the decimal point 5 digits to the right and exponent of 10 should be -5 (negative integer)

When we do so, we get the scientific notation of the given number.

So,

0.000023 = 2.3 x 10-5

Important Note:

If we don't find decimal point at anywhere of the given number, we have to assume that there is decimal point at the end of the number.

For example,

2300000 -------------> 2300000.

Here, the non zero digit comes first and decimal point comes next. So we have to apply case 1 to convert this number into scientific notation.

## Scientific Notation to Standard Form

To convert a number from scientific notation to standard notation, first we have to notice the exponent of 10 in scientific notation.

If the exponent of 10 is positive, we have to move the decimal point to the right.

For example, if you have 103, you have to move the decimal point 3 digits to the right.

If the exponent of 10 is negative, we have to move the decimal point to the right.

For example, if you have 10-5, you have to move the decimal point 5 digits to the left.

Example 1 :

Write the following number in standard form.

5.236 x 105

Solution :

Here, the exponent of 10 is positive 5. So we have to move the decimal point five digits to the right.

In 5.236, we have only three digits after the decimal point.

So, we have to add two zeros to move the decimal point five digits to the right.

Therefore, the standard form of 5.236 x 105 is

523600

Example 2 :

Write the following numbers in standard form.

6.415 x 10-6

Solution :

Here, the exponent of 10 is negative 6. So we have to move the decimal point six digits to the left.

In 6.415, we have only 1 digit before the decimal point.

So, we have to add five zeros to move the decimal point six digits to the left.

Therefore, the standard form of 6.415 x 10-6 is

0.000006415

To get practice problems on standard form  and scientific notation,

Apart from the stuff, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6