CONSTANT OF PROPORTIONALITY

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The value of the constant of proportionality is depending on the type of proportion we have between the two quantities.

There are two types of proportion :

1. Direct proportion

2. Inverse proportion

Direct Proportion

If y is directly proportional to x, then we have

y = kx

where k is the constant of proportionality.

Inverse Proportion

If y is inversely proportional to x, then we have

y = k/x

where k is the constant of proportionality.

Identifying Proportional Relationships

If two different quantities are given, how to check whether the relationship between them is proportional?

We have to get ratio of the two quantities for all the given values.

If all the ratios are equal, then the relationship is proportional.

If all the ratios are not equal, then the relationship is not proportional.

Example 1 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Let us get the ratio of x and y for all the given values.

4/48 = 1/12

7/84 = 1/12

10/120 = 1/12

When we take ratio of x and y for all the given values, we get equal value for all the ratios.

Therefore the relationship given in the table is proportional.

When we look at the above table when x gets increased, y also gets increased, so it is direct proportion.

Then, we have

y = kx 

Substitute 4 for x and 48 for y.

48 = k(4)

12 = k

So, the constant of proportionality is 12.

Example 2 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Let us get the ratio of x and y for all the given values.

1/100 = 1/100

3/300 = 1/100

5/550 = 1/110

6/600 = 1/100

When we take ratio of x and y for all the given values, we don't get equal value for all the ratios.

So, the relationship given in the table is not proportional.

Example 3 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Find the ratio of x and y for all the given values.

2/1 = 2

4/2 = 2

8/4 = 2

10/5 = 2

When we take ratio of x and y for all the given values, we get equal value for all the ratios.

Therefore, the relationship given in the table is proportional.

When we look at the above table when x gets increased, y also gets increased, so it is direct proportion.

Then, we have

y = kx 

Substitute 2 for x and 1 for y.

1 = k(2)

1/2 = k

So, the constant of proportionality is 1/2.

Example 4 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Find the ratio of x and y for all the given values. 

1/2 = 1/2

2/4 = 1/2

3/6 = 1/2

4/6 = 2/3

When we take ratio of x and y for all the given values, we don't get equal value for all the ratios.

So, the relationship given in the table is not proportional.

Example 5 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Find the ratio of x and y for all the given values.

1/23 = 1/23

2/36 = 1/18

5/75 = 1/15

When we take ratio of x and y for all the given values, we don't get equal value for all the ratios.

So, the relationship given in the table is not proportional.

Example 6 :

Examine the given table and determine if the relationship is proportional. If yes, determine the constant of proportionality.

Solution :

Find the ratio of x and y for all the given values.

2/4 = 1/2

4/8 = 1/2

6/12 = 1/2

8/16 = 1/2

When we take ratio of x and y for all the given values, we get equal value for all the ratios.

Therefore the relationship given in the table is proportional.

When we look at the above table when x gets increased, y also gets increased, so it is direct proportion.

Then, we have

y = kx

Substitute 2 for x and 4 for y.

4 = k(2)

2 = k

So, the constant of proportionality is 2.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Specifying Units of Measure

    Dec 15, 25 07:09 PM

    Specifying Units of Measure

    Read More

  2. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More