CONGRUENT TRIANGLES ON THE COORDINATE PLANE

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

By SSS triangle congruence postulate, if three sides of one triangle are congruent to three sides of another second triangle, then the two triangles are congruent.

Given two triangles on a coordinate plane, we can check whether they are congruent by using the  distance formula to find the lengths of their sides. If three pairs of sides are congruent, then the triangles are congruent by the above postulate. 

The diagram given below illustrates this. 

Problem 1 :

In the diagram given below, prove that Ξ”ABC  β‰…  Ξ”FGH

Solution :

Because AB = 5 in triangle ABC and FG = 5 in triangle FGH, 

AB  β‰…  FG.

Because AC = 3 in triangle ABC and FH = 3 in triangle FGH, 

AC  β‰…  FH.

Use the distance formula to find the lengths of BC and GH. 

Length of BC :

BC  =  βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  B(-7, 0) and (x2, y2)  =  C(-4, 5)

BC  =  βˆš[(-4 + 7)2 + (5 - 0)2]

BC  =  βˆš[32 + 52]

BC  =  βˆš[9 + 25]

BC  =  βˆš34

Length of GH :

GH  =   βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  G(1, 2) and (x2, y2)  =  H(6, 5)

GH  =  βˆš[(6 - 1)2 + (5 - 2)2]

GH  =  βˆš[52 + 32]

GH  =  βˆš[25 + 9]

GH  =  βˆš34

Conclusion :

Because BC = βˆš34 and GH = βˆš34,

BC  β‰…  GH

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

Ξ”ABC  β‰…  Ξ”FGH

Problem 2 :

In the diagram given below, prove that Ξ”ABC  β‰…  Ξ”DEF

Solution :

From the diagram given above, we have

A(-3, 3), B(0, 1), C(-3, 1), D(0, 6), E(2, 3), F(2, 6)

Because AC = 2 in triangle ABC and DF = 2 in triangle DEF, 

AC  β‰…  DF.

Because BC = 3 in triangle ABC and EF = 3 in triangle DEF, 

BC  β‰…  EF.

Use the distance formula to find the lengths of BC and GH. 

Length of AB :

AB  =   βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  A(-3, 3) and (x2y2)  =  B(0, 1)

AB  =  βˆš[(0 + 3)2 + (1 - 3)2]

AB  =  βˆš[32 + (-2)2]

AB  =  βˆš[9 + 4]

AB  =  βˆš13

Length of DE :

DE  =  βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  D(0, 6) and (x2, y2)  =  E(2, 3)

DE  =  βˆš[(2 - 0)2 + (3 - 6)2]

DE  =  βˆš[22 + (-3)2]

DE  =  βˆš[4 + 9]

DE  =  βˆš13

Conclusion :

Because AB = βˆš13 and DE = βˆš13,

AB  β‰…  DE

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

Ξ”ABC  β‰…  Ξ”DEF 

Problem 3 : 

In the diagram given below, prove that Ξ”OPM  β‰…  Ξ”MNP

Solution :

PM is the common side for both the triangles OPM and MNP. 

Because OP = 6 in triangle OPM and PN = 6 in triangle MNP, 

OP  β‰…  PN.

Use the distance formula to find the lengths of OM and MN. 

Length of OM : 

OM  =   βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  O(0, 0) and (x2, y2)  =  M(3, 3)

OM  =  βˆš[(3 - 0)2 + (3 - 0)2]

OM  =  βˆš[32 + 32]

OM  =  βˆš[9 + 9]

OM  =  βˆš18

Length of MN : 

MN  =   βˆš[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  M(3, 3) and (x2, y2)  =  N(6, 6)

MN  =  βˆš[(6 - 3)2 + (6 - 3)2]

MN  =  βˆš[32 + 32]

MN  =  βˆš[9 + 9]

MN  =  βˆš18

Conclusion :

Because  OM = βˆš18 and MN = βˆš18,

OM  β‰…  MN

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

Ξ”OPM  β‰…  Ξ”MNP

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More