CONGRUENT TRIANGLES ON A COORDINATE PLANE WORKSHEET

About "Congruent Triangles on a Coordinate Plane Worksheet"

Congruent Triangles on a Coordinate Plane Worksheet :

Worksheet given in this section is much useful to the students who would like to practice problems on congruence triangles on the coordinate plane. 

Congruent Triangles on a Coordinate Plane Worksheet - Problems

Problem 1 : 

In the diagram given below, prove that ΔABC  ≅  ΔFGH

Problem 2 : 

In the diagram given below, prove that ΔABC  ≅  ΔDEF

Problem 3 : 

In the diagram given below, prove that ΔOPM  ≅  ΔMNP

Congruent Triangles on a Coordinate Plane Worksheet - Solution

Problem 1 : 

In the diagram given below, prove that ΔABC  ≅  ΔFGH

Solution :

Because AB = 5 in triangle ABC and FG = 5 in triangle FGH, 

AB  ≅  FG.

Because AC = 3 in triangle ABC and FH = 3 in triangle FGH, 

AC  ≅  FH.

Use the distance formula to find the lengths of BC and GH. 

Length of BC : 

BC  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  B(-7, 0) and (x₂, y₂)  =  C(-4, 5)

BC  =  √[(-4 + 7)² + (5 - 0)²]

BC  =  √[3² + 5²]

BC  =  √[9 + 25]

BC  =  √34

Length of GH : 

GH  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  G(1, 2) and (x₂, y₂)  =  H(6, 5)

GH  =  √[(6 - 1)² + (5 - 2)²]

GH  =  √[5² + 3²]

GH  =  √[25 + 9]

GH  =  √34

Conclusion :

Because BC = √34 and GH = √34,

BC  ≅  GH

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔABC  ≅  ΔFGH 

Problem 2 : 

In the diagram given below, prove that ΔABC  ≅  ΔDEF

From the diagram given above, we have

A(-3, 3), B(0, 1), C(-3, 1), D(0, 6), E(2, 3), F(2, 6)

Solution :

Because AC = 2 in triangle ABC and DF = 2 in triangle DEF, 

AC  ≅  DF.

Because BC = 3 in triangle ABC and EF = 3 in triangle DEF, 

BC  ≅  EF.

Use the distance formula to find the lengths of BC and GH. 

Length of AB : 

AB  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  A(-3, 3) and (x₂, y₂)  =  B(0, 1)

AB  =  √[(0 + 3)² + (1 - 3)²]

AB  =  √[3² + (-2)²]

AB  =  √[9 + 4]

AB  =  √13

Length of DE : 

DE  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  D(0, 6) and (x₂, y₂)  =  E(2, 3)

DE  =  √[(2 - 0)² + (3 - 6)²]

DE  =  √[2² + (-3)²]

DE  =  √[4 + 9]

DE  =  √13

Conclusion :

Because AB = √13 and DE = √13,

AB  ≅  DE

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔABC  ≅  ΔDEF 

Problem 3 : 

In the diagram given below, prove that ΔOPM  ≅  ΔMNP

Solution :

PM is the common side for both the triangles OPM and MNP. 

Because OP = 6 in triangle OPM and PN = 6 in triangle MNP, 

OP  ≅  PN.

Use the distance formula to find the lengths of OM and MN. 

Length of OM : 

OM  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  O(0, 0) and (x₂, y₂)  =  M(3, 3)

OM  =  √[(3 - 0)² + (3 - 0)²]

OM  =  √[3² + 3²]

OM  =  √[9 + 9]

OM  =  √18

Length of MN : 

MN  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  M(3, 3) and (x₂, y₂)  =  N(6, 6)

MN  =  √[(6 - 3)² + (6 - 3)²]

MN  =  √[3² + 3²]

MN  =  √[9 + 9]

MN  =  √18

Conclusion :

Because  OM = √18 and MN = √18,

OM  ≅  MN

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔOPM  ≅  ΔMNP

After having gone through the stuff given above, we hope that the students would have understood, "Congruent triangles on a coordinate plane worksheet". 

Apart from the stuff given above, if you want to know more about "Congruent triangles on the coordinate plane", please click here

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...