CONDITIONAL  TRIGONOMETRIC IDENTITIES

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Example 1 :

If A + B + C = π/2, prove that 

sin2A + sin2B + sin2C = 4cosAcosBcosC

Solution :

sin2A + sin2B + sin2C :

= 2sin(A + B)cos(A - B) + sin2C

= 2sin(90 - C)cos(A - B) + 2sinCcosC

= 2cosCcos(A - B) + 2sinCcosC

= 2cosC[cos(A - B) + sinC]

= 2cosC[cos(A - B) + sin(90 - (A + B)]

= 2cosC[cos(A - B) + cos(A + B)]

= 2cosC[2cosAcos(-B)]

= 2cosC[2cosAcosB]

= 4cosAcosBcosC

Example 2 :

If A + B + C = π/2, prove that 

cos2A + cos2B + cos2C = 1 + 4sinAsinBcosC

Solution :

cos2A + cos2B + cos2C :

Use the identity of (cosC + cosD) for cos2A + cos2B.

= 2cos(A + B)cos(A - B) + cos2C

= 2cos(90 - C)cos(A - B) + 1 - 2sin2C

= 2sinCcos(A - B) + 1 - 2sin2C

= 1 + 2sinC[cos(A - B) - sinC]

= 1 + 2sinC[cos(A - B) - sin(90 - (A + B)]

= 1 + 2sinC[cos(A - B) - cos(A + B)]

= 1 + 2sinC[-2sinAsin(-B)]

= 1 + 2sinC[2sinAsinB]

= 1 + 4sinAsinBsinC

Example 3 :

If triangle ABC is a right triangle and ∠A = π/2, then prove that

(i) cos2B + cos2C = 1

(ii) sin2B + sin2C = 1

(iii) cosB - cosC = -1 + 2√2cos(B/2)sin(C/2)

Solution :

(i) cos2 B + cos2 C = 1 :

In the right triangle ABC above, 

cosθ = Adjacent side/Hypotenuse

cosB = AB/BC

cosC = AC/BC

cos2B + cos2C  =  (AB/BC)2 + (AC/BC)2 

  =  (AB2 + AC2)/BC2

  =  BC2/BC2

  =  1

(ii) sin2 B + sin2 C = 1 :

In the right triangle ABC above, 

sinθ = Opposite side/Hypotenuse

sinB = AC/BC

sinC = AB/BC

 sin2B + sin2C = (AC/BC)2 + (AB/BC)2

= AC2/BC2 + (AB2/BC2)

= (AC2 + AB2)/BC2

= BC2/BC2

= 1

(iii) cosB − cosC = -1 + 2 √2 cos B/2 sin C/2 :

cosB - cosC = 2cos2B - 1 - cosC

= -1 + 2cos2B - cosC ----(1)

In the triangle ABC above, 

A + B + C = π

It is given that A = π/2. Then, 

B + C = π/2

C = π/2 - B

Substitute C = π/2 - B in (1).

= -1 + 2cos2(B/2) - cos(π/2 - B)

= -1 + 2cos2(B/2) - sinB

= -1 + 2cos2(B/2) - 2sin(B/2)cos(B/2)

= -1 + 2cos(B/2)(cos(B/2) - sin(B/2))

B = π/2 - C ----> B/2 = π/4 - C/2

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - sin(π/4 - C/2)]

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - cos(π/2 - (π/4 - C/2))]

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - cos(π/4 + C/2)]

= -1 + 2cos(B/2)[-2sin(π/4)sin(-C/2)]

= -1 + 2cos(B/2)[2(1/√2)sin(C/2)]

= -1 + 2√2cos(B/2)sin(C/2)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Worksheet on Speed Distance and Time

    Dec 10, 23 10:09 PM

    tutoring.png
    Worksheet on Speed Distance and Time

    Read More

  2. Time Speed and Distance Problems

    Dec 10, 23 07:42 PM

    timedistancespeedproblems.png
    Time Speed and Distance Problems - Step by Step Solutions

    Read More

  3. Worksheet on Speed Time and Distance

    Dec 10, 23 07:16 PM

    tutoring.png
    Worksheet on Speed Time and Distance

    Read More