CONDITIONAL TRIGONOMETRIC IDENTITIES PROBLEMS

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Abbreviations used : 

L.H.S -----> Left hand side

R.H.S -----> Right hand side

Problem 1 :

If A + B + C = 180°, prove that 

sin2A + sin2B + sin2C  =  4sinAsinBsin C

Solution :

L.H.S :

=  sin2A + sin2B + sin2C

Use the formula of (sin C + sin D).

=  2sin[(2A + 2B)/2]cos[(2A - 2B)/2] + sin2C

=  2sin(A + B)cos(A - B) + sin2C -----(1)

A + B + C  =  180°

A + B  =  180 - C

sin(A + B)  =  sin(180 - C)  =  sinC

(1)-----> =  2sinCcos(A - B) + 2sinCcosC

=  2sinC[cos(A - B) + cosC]

=  2sinC{cos(A - B) + cos[180 - (A + B)]}

=  2sinC{cos(A - B) + cos(A + B)} -----(2)

cosC - cosD  =  -2sin(C + D)/2sin(C - D)/2

Here C  =  A - B and D =  A  + B

C  + D  =  A - B + A + B  =  2A

C  - D  =  A - B - A - B  =  -2B

(2)----->  =  2sinC[-2sin(2A/2)sin(-2B/2)]

=  2sinC[2sinAsinB]

=  4sinAsinBsinC

=  R.H.S

Problem 2 :

If A + B + C = 180°, prove that 

cosA + cosB - cosC  =  -1 + 4cos(A/2)cos(B/2)sin(C/2)

Solution :

L.H.S :

=  cosA + cosB - cosC

=  2cos(A + B)/2cos(A - B)/2 - cosC

=  2cos(180 - C)/2cos(A - B)/2 - cosC

=  2cos[90 - (C/2)]cos(A - B)/2 - cosC

=  2sin(C/2)cos(A - B)/2 - [1 - 2sin2(C/2)]

=  2sin(C/2)cos(A - B)/2 - 1 + 2sin2(C/2)

=  -1 + 2sin(C/2)cos(A - B)/2 + 2sin2(C/2)

=  -1 + 2sin(C/2){cos(A - B)/2 + sin[180 - (A + B)]/2}

=  -1 + 2sin(C/2){cos(A - B)/2 + sin[90 - (A + B)/2]}

=  -1 + 2sin(C/2)[cos(A - B)/2 + cos(A + B)/2)] -----(1)

Use the formula of (cosC + cosD).

Here C  =  (A - B) / 2 and D  =  (A + B)/2

C + D  =  2A/2  =  A

C - D  =  -2B/2  =  -B

(1)----->  =  -1 + 2sin(C/2)[2cos(A/2)cos(-B/2)]

=  -1 + 4sin(C/2)[cos(A/2)cos(B/2)]

=  -1 + 4cos(A/2)cos(B/2)sin(C/2)

=  R.H.S

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 13)

    Sep 14, 25 09:32 PM

    digitalsatmath364.png
    10 Hard SAT Math Questions (Part - 13)

    Read More

  2. 10 Hard SAT Math Questions (Part - 12)

    Sep 12, 25 09:50 PM

    10 Hard SAT Math Questions (Part - 12)

    Read More

  3. 10 Hard SAT Math Questions (Part - 11)

    Sep 11, 25 08:23 AM

    10 Hard SAT Math Questions (Part - 11)

    Read More