CONDITIONAL IDENTITIES TRIGONOMETRIC EXAMPLES

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Here we are going to see some examples to show how to solve conditional trigonometric identities problems.

Example 1 :

If A + B + C  =  180°, prove that 

tan(A/2)tan(B/2) + tan(B/2)tan(C/2) + tan(C/2)tan(A/2) = 1

Solution :

A + B + C  =  180

A + B  =  180 - C

A/2 + B/2  =  90 - C/2

tan(A/2 + B/2)  =  tan[90 - (C/2)]

tan(A/2 + B/2)  =  cot(C/2) -----(1)

Formula :  

tan(A + B)  =  tan A + tan B / (1 - tan A tan B)

Use the above formula on the left side of (1). 

(1)----->

[tan(A/2) + tan(B/2)] / [(1 - tan(A/2)tan(B/2)]  =  1/tan(C/2)

Take reciprocal on both sides

 [1 - tan(A/2)tan(B/2)] / [tan(A/2) + tan(B/2)]  = tan (C/2)

1 - tan(A/2)tan(B/2)  =  tan(C/2)[tan(A/2) + tan(B/2)]

1 - tan(A/2)tan(B/2) = tan(A/2)tan(C/2)+tan(B/2)tan(C/2)

1  =  tan(A/2)tan(C/2)+tan(B/2)tan(C/2)+tan(A/2)tan(B/2)

Example 2 :

If A + B + C  =  180°, prove that 

sinA + sinB + sinC  =  4cos A/2 cos B/2 cos C/2

Solution :

sinA + sinB + sinC :

=  2sin(A + B)/2cos(A - B)/2 + sinC

=  2sin(180 - C)/2 cos (A - B)/2 + sin C

=  2 sin C/2 cos (A - B)/2 + 2 sin C/2 cos C/2

=  2 sin C/2 [cos (A - B)/2 + sin C/2]

=  2 sin C/2 [cos (A-B)/2 + sin (180-(A+B))/2]

=  2 sin C/2 [cos (A-B)/2 + sin (90-(A+B)/2)]

=  2 sin C/2 [cos (A-B)/2 + cos (A+B)/2]

=  2 sin C/2 [2 cos A/2 cos B/2]

=  4 cos A/2 cos B/2 sin C/2

Example 3 :

If A + B + C  =  180°, prove that 

sin(B + C - A) + sin(C + A − B) + sin(A + B - C) = 4sinAsinB sinC.

Solution :

A + B + C  =  180

A + B  =  180 - C

B + C  =  180 - A

C + A  =  180 - B

sin(B + C - A) + sin(C + A - B) + sin(A + B - C) :

=  sin(180 - A - A) + sin(180 - B - B) + sin(180 - C - C)

=  sin(180 - 2A) + sin(180 - 2B) + sin(180 - 2C)

=  sin 2A + sin 2B + sin 2C

=  2sin(A + B)cos(A - B) + sin2C

=  2sin(180 - C)cos(A - B) + 2sinCcosC

=  2sinCcos(A - B) + 2sinCcosC

=  2sinC[cos(A - B) + cosC]

=  2sinC[cos(A - B) + cos(180 - (A + B)]

=  2sinC[cos(A - B) - cos(A + B)]

=  2sinC[-2sinAsin(-B)]

=  4sinCsinAsinB

=  4sinAsinBsinC

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 32)

    Oct 30, 25 08:57 AM

    digitalsatmath403.png
    10 Hard SAT Math Questions (Part - 32)

    Read More

  2. 10 Hard SAT Math Questions (Part - 31)

    Oct 27, 25 10:32 AM

    10 Hard SAT Math Questions (Part - 31)

    Read More

  3. Time and Work Problems

    Oct 20, 25 07:13 AM

    Time and Work Problems - Concept - Solved Problems

    Read More